Skip to content

Token counter

TokenCountingEvent dataclass #

TokenCountingEvent(prompt: str, completion: str, completion_token_count: int, prompt_token_count: int, total_token_count: int = 0, event_id: str = '')

Parameters:

Name Type Description Default
prompt str
required
completion str
required
completion_token_count int
required
prompt_token_count int
required
total_token_count int
0
event_id str
''
Source code in llama_index/core/callbacks/token_counting.py
26
27
28
29
30
31
32
33
34
35
36
@dataclass
class TokenCountingEvent:
    prompt: str
    completion: str
    completion_token_count: int
    prompt_token_count: int
    total_token_count: int = 0
    event_id: str = ""

    def __post_init__(self) -> None:
        self.total_token_count = self.prompt_token_count + self.completion_token_count

TokenCountingHandler #

Bases: PythonicallyPrintingBaseHandler

Callback handler for counting tokens in LLM and Embedding events.

Parameters:

Name Type Description Default
tokenizer Optional[Callable[[str], List]]

Tokenizer to use. Defaults to the global tokenizer (see llama_index.core.utils.globals_helper).

None
event_starts_to_ignore Optional[List[CBEventType]]

List of event types to ignore at the start of a trace.

None
event_ends_to_ignore Optional[List[CBEventType]]

List of event types to ignore at the end of a trace.

None
Source code in llama_index/core/callbacks/token_counting.py
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
class TokenCountingHandler(PythonicallyPrintingBaseHandler):
    """
    Callback handler for counting tokens in LLM and Embedding events.

    Args:
        tokenizer:
            Tokenizer to use. Defaults to the global tokenizer
            (see llama_index.core.utils.globals_helper).
        event_starts_to_ignore: List of event types to ignore at the start of a trace.
        event_ends_to_ignore: List of event types to ignore at the end of a trace.

    """

    def __init__(
        self,
        tokenizer: Optional[Callable[[str], List]] = None,
        event_starts_to_ignore: Optional[List[CBEventType]] = None,
        event_ends_to_ignore: Optional[List[CBEventType]] = None,
        verbose: bool = False,
        logger: Optional[logging.Logger] = None,
    ) -> None:
        self.llm_token_counts: List[TokenCountingEvent] = []
        self.embedding_token_counts: List[TokenCountingEvent] = []
        self.tokenizer = tokenizer or get_tokenizer()

        self._token_counter = TokenCounter(tokenizer=self.tokenizer)
        self._verbose = verbose

        super().__init__(
            event_starts_to_ignore=event_starts_to_ignore or [],
            event_ends_to_ignore=event_ends_to_ignore or [],
            logger=logger,
        )

    def start_trace(self, trace_id: Optional[str] = None) -> None:
        return

    def end_trace(
        self,
        trace_id: Optional[str] = None,
        trace_map: Optional[Dict[str, List[str]]] = None,
    ) -> None:
        return

    def on_event_start(
        self,
        event_type: CBEventType,
        payload: Optional[Dict[str, Any]] = None,
        event_id: str = "",
        parent_id: str = "",
        **kwargs: Any,
    ) -> str:
        return event_id

    def on_event_end(
        self,
        event_type: CBEventType,
        payload: Optional[Dict[str, Any]] = None,
        event_id: str = "",
        **kwargs: Any,
    ) -> None:
        """Count the LLM or Embedding tokens as needed."""
        if (
            event_type == CBEventType.LLM
            and event_type not in self.event_ends_to_ignore
            and payload is not None
        ):
            self.llm_token_counts.append(
                get_llm_token_counts(
                    token_counter=self._token_counter,
                    payload=payload,
                    event_id=event_id,
                )
            )

            if self._verbose:
                self._print(
                    "LLM Prompt Token Usage: "
                    f"{self.llm_token_counts[-1].prompt_token_count}\n"
                    "LLM Completion Token Usage: "
                    f"{self.llm_token_counts[-1].completion_token_count}",
                )
        elif (
            event_type == CBEventType.EMBEDDING
            and event_type not in self.event_ends_to_ignore
            and payload is not None
        ):
            total_chunk_tokens = 0
            for chunk in payload.get(EventPayload.CHUNKS, []):
                self.embedding_token_counts.append(
                    TokenCountingEvent(
                        event_id=event_id,
                        prompt=chunk,
                        prompt_token_count=self._token_counter.get_string_tokens(chunk),
                        completion="",
                        completion_token_count=0,
                    )
                )
                total_chunk_tokens += self.embedding_token_counts[-1].total_token_count

            if self._verbose:
                self._print(f"Embedding Token Usage: {total_chunk_tokens}")

    @property
    def total_llm_token_count(self) -> int:
        """Get the current total LLM token count."""
        return sum([x.total_token_count for x in self.llm_token_counts])

    @property
    def prompt_llm_token_count(self) -> int:
        """Get the current total LLM prompt token count."""
        return sum([x.prompt_token_count for x in self.llm_token_counts])

    @property
    def completion_llm_token_count(self) -> int:
        """Get the current total LLM completion token count."""
        return sum([x.completion_token_count for x in self.llm_token_counts])

    @property
    def total_embedding_token_count(self) -> int:
        """Get the current total Embedding token count."""
        return sum([x.total_token_count for x in self.embedding_token_counts])

    def reset_counts(self) -> None:
        """Reset the token counts."""
        self.llm_token_counts = []
        self.embedding_token_counts = []

total_llm_token_count property #

total_llm_token_count: int

Get the current total LLM token count.

prompt_llm_token_count property #

prompt_llm_token_count: int

Get the current total LLM prompt token count.

completion_llm_token_count property #

completion_llm_token_count: int

Get the current total LLM completion token count.

total_embedding_token_count property #

total_embedding_token_count: int

Get the current total Embedding token count.

on_event_end #

on_event_end(event_type: CBEventType, payload: Optional[Dict[str, Any]] = None, event_id: str = '', **kwargs: Any) -> None

Count the LLM or Embedding tokens as needed.

Source code in llama_index/core/callbacks/token_counting.py
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
def on_event_end(
    self,
    event_type: CBEventType,
    payload: Optional[Dict[str, Any]] = None,
    event_id: str = "",
    **kwargs: Any,
) -> None:
    """Count the LLM or Embedding tokens as needed."""
    if (
        event_type == CBEventType.LLM
        and event_type not in self.event_ends_to_ignore
        and payload is not None
    ):
        self.llm_token_counts.append(
            get_llm_token_counts(
                token_counter=self._token_counter,
                payload=payload,
                event_id=event_id,
            )
        )

        if self._verbose:
            self._print(
                "LLM Prompt Token Usage: "
                f"{self.llm_token_counts[-1].prompt_token_count}\n"
                "LLM Completion Token Usage: "
                f"{self.llm_token_counts[-1].completion_token_count}",
            )
    elif (
        event_type == CBEventType.EMBEDDING
        and event_type not in self.event_ends_to_ignore
        and payload is not None
    ):
        total_chunk_tokens = 0
        for chunk in payload.get(EventPayload.CHUNKS, []):
            self.embedding_token_counts.append(
                TokenCountingEvent(
                    event_id=event_id,
                    prompt=chunk,
                    prompt_token_count=self._token_counter.get_string_tokens(chunk),
                    completion="",
                    completion_token_count=0,
                )
            )
            total_chunk_tokens += self.embedding_token_counts[-1].total_token_count

        if self._verbose:
            self._print(f"Embedding Token Usage: {total_chunk_tokens}")

reset_counts #

reset_counts() -> None

Reset the token counts.

Source code in llama_index/core/callbacks/token_counting.py
266
267
268
269
def reset_counts(self) -> None:
    """Reset the token counts."""
    self.llm_token_counts = []
    self.embedding_token_counts = []

get_tokens_from_response #

get_tokens_from_response(response: Union[CompletionResponse, ChatResponse]) -> Tuple[int, int]

Get the token counts from a raw response.

Source code in llama_index/core/callbacks/token_counting.py
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
def get_tokens_from_response(
    response: Union["CompletionResponse", "ChatResponse"],
) -> Tuple[int, int]:
    """Get the token counts from a raw response."""
    raw_response = response.raw
    if not isinstance(raw_response, dict):
        raw_response = dict(raw_response or {})

    usage = raw_response.get("usage", raw_response.get("usage_metadata", {}))
    if usage is None:
        usage = response.additional_kwargs

    if not usage:
        return 0, 0

    if not isinstance(usage, dict):
        usage = usage.model_dump()

    possible_input_keys = ("prompt_tokens", "input_tokens", "prompt_token_count")
    possible_output_keys = (
        "completion_tokens",
        "output_tokens",
        "candidates_token_count",
    )

    prompt_tokens = 0
    for input_key in possible_input_keys:
        if input_key in usage:
            prompt_tokens = usage[input_key]
            break

    completion_tokens = 0
    for output_key in possible_output_keys:
        if output_key in usage:
            completion_tokens = usage[output_key]
            break

    return prompt_tokens, completion_tokens

options: members: - TokenCountingHandler