Correctness
Evaluation modules.
AnswerRelevancyEvaluator #
Bases: BaseEvaluator
Answer relevancy evaluator.
Evaluates the relevancy of response to a query. This evaluator considers the query string and response string.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
raise_error
|
Optional[bool]
|
Whether to raise an error if the response is invalid. Defaults to False. |
False
|
eval_template
|
Optional[Union[str, BasePromptTemplate]]
|
The template to use for evaluation. |
None
|
refine_template
|
Optional[Union[str, BasePromptTemplate]]
|
The template to use for refinement. |
required |
Source code in llama_index/core/evaluation/answer_relevancy.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | |
aevaluate
async
#
aevaluate(query: str | None = None, response: str | None = None, contexts: Sequence[str] | None = None, sleep_time_in_seconds: int = 0, **kwargs: Any) -> EvaluationResult
Evaluate whether the response is relevant to the query.
Source code in llama_index/core/evaluation/answer_relevancy.py
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | |
BaseEvaluator #
Bases: PromptMixin
Base Evaluator class.
Source code in llama_index/core/evaluation/base.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | |
evaluate #
evaluate(query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, **kwargs: Any) -> EvaluationResult
Run evaluation with query string, retrieved contexts, and generated response string.
Subclasses can override this method to provide custom evaluation logic and take in additional arguments.
Source code in llama_index/core/evaluation/base.py
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | |
aevaluate
abstractmethod
async
#
aevaluate(query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, **kwargs: Any) -> EvaluationResult
Run evaluation with query string, retrieved contexts, and generated response string.
Subclasses can override this method to provide custom evaluation logic and take in additional arguments.
Source code in llama_index/core/evaluation/base.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | |
evaluate_response #
evaluate_response(query: Optional[str] = None, response: Optional[Response] = None, **kwargs: Any) -> EvaluationResult
Run evaluation with query string and generated Response object.
Subclasses can override this method to provide custom evaluation logic and take in additional arguments.
Source code in llama_index/core/evaluation/base.py
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 | |
aevaluate_response
async
#
aevaluate_response(query: Optional[str] = None, response: Optional[Response] = None, **kwargs: Any) -> EvaluationResult
Run evaluation with query string and generated Response object.
Subclasses can override this method to provide custom evaluation logic and take in additional arguments.
Source code in llama_index/core/evaluation/base.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | |
EvaluationResult #
Bases: BaseModel
Evaluation result.
Output of an BaseEvaluator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
str | None
|
Query string |
None
|
contexts
|
Sequence[str] | None
|
Context strings |
None
|
response
|
str | None
|
Response string |
None
|
passing
|
bool | None
|
Binary evaluation result (passing or not) |
None
|
feedback
|
str | None
|
Feedback or reasoning for the response |
None
|
score
|
float | None
|
Score for the response |
None
|
pairwise_source
|
str | None
|
Used only for pairwise and specifies whether it is from original order of presented answers or flipped order |
None
|
invalid_result
|
bool
|
Whether the evaluation result is an invalid one. |
False
|
invalid_reason
|
str | None
|
Reason for invalid evaluation. |
None
|
Source code in llama_index/core/evaluation/base.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | |
BatchEvalRunner #
Batch evaluation runner.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
evaluators
|
Dict[str, BaseEvaluator]
|
Dictionary of evaluators. |
required |
workers
|
int
|
Number of workers to use for parallelization. Defaults to 2. |
2
|
show_progress
|
bool
|
Whether to show progress bars. Defaults to False. |
False
|
Source code in llama_index/core/evaluation/batch_runner.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 | |
aevaluate_response_strs
async
#
aevaluate_response_strs(queries: Optional[List[str]] = None, response_strs: Optional[List[str]] = None, contexts_list: Optional[List[List[str]]] = None, **eval_kwargs_lists: Dict[str, Any]) -> Dict[str, List[EvaluationResult]]
Evaluate query, response pairs.
This evaluates queries, responses, contexts as string inputs. Can supply additional kwargs to the evaluator in eval_kwargs_lists.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
queries
|
Optional[List[str]]
|
List of query strings. Defaults to None. |
None
|
response_strs
|
Optional[List[str]]
|
List of response strings. Defaults to None. |
None
|
contexts_list
|
Optional[List[List[str]]]
|
List of context lists. Defaults to None. |
None
|
**eval_kwargs_lists
|
Dict[str, Any]
|
Dict of either dicts or lists of kwargs to pass to evaluator. Defaults to None. multiple evaluators: {evaluator: {kwarg: [list of values]},...} single evaluator: {kwarg: [list of values]} |
{}
|
Source code in llama_index/core/evaluation/batch_runner.py
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 | |
aevaluate_responses
async
#
aevaluate_responses(queries: Optional[List[str]] = None, responses: Optional[List[Response]] = None, **eval_kwargs_lists: Dict[str, Any]) -> Dict[str, List[EvaluationResult]]
Evaluate query, response pairs.
This evaluates queries and response objects.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
queries
|
Optional[List[str]]
|
List of query strings. Defaults to None. |
None
|
responses
|
Optional[List[Response]]
|
List of response objects. Defaults to None. |
None
|
**eval_kwargs_lists
|
Dict[str, Any]
|
Dict of either dicts or lists of kwargs to pass to evaluator. Defaults to None. multiple evaluators: {evaluator: {kwarg: [list of values]},...} single evaluator: {kwarg: [list of values]} |
{}
|
Source code in llama_index/core/evaluation/batch_runner.py
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 | |
aevaluate_queries
async
#
aevaluate_queries(query_engine: BaseQueryEngine, queries: Optional[List[str]] = None, **eval_kwargs_lists: Dict[str, Any]) -> Dict[str, List[EvaluationResult]]
Evaluate queries.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query_engine
|
BaseQueryEngine
|
Query engine. |
required |
queries
|
Optional[List[str]]
|
List of query strings. Defaults to None. |
None
|
**eval_kwargs_lists
|
Dict[str, Any]
|
Dict of lists of kwargs to pass to evaluator. Defaults to None. |
{}
|
Source code in llama_index/core/evaluation/batch_runner.py
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 | |
evaluate_response_strs #
evaluate_response_strs(queries: Optional[List[str]] = None, response_strs: Optional[List[str]] = None, contexts_list: Optional[List[List[str]]] = None, **eval_kwargs_lists: Dict[str, Any]) -> Dict[str, List[EvaluationResult]]
Evaluate query, response pairs.
Sync version of aevaluate_response_strs.
Source code in llama_index/core/evaluation/batch_runner.py
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 | |
evaluate_responses #
evaluate_responses(queries: Optional[List[str]] = None, responses: Optional[List[Response]] = None, **eval_kwargs_lists: Dict[str, Any]) -> Dict[str, List[EvaluationResult]]
Evaluate query, response objs.
Sync version of aevaluate_responses.
Source code in llama_index/core/evaluation/batch_runner.py
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 | |
evaluate_queries #
evaluate_queries(query_engine: BaseQueryEngine, queries: Optional[List[str]] = None, **eval_kwargs_lists: Dict[str, Any]) -> Dict[str, List[EvaluationResult]]
Evaluate queries.
Sync version of aevaluate_queries.
Source code in llama_index/core/evaluation/batch_runner.py
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 | |
upload_eval_results #
upload_eval_results(project_name: str, app_name: str, results: Dict[str, List[EvaluationResult]]) -> None
Upload the evaluation results to LlamaCloud.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
project_name
|
str
|
The name of the project. |
required |
app_name
|
str
|
The name of the app. |
required |
results
|
Dict[str, List[EvaluationResult]]
|
The evaluation results, a mapping of metric name to a list of EvaluationResult objects. |
required |
Examples:
results = batch_runner.evaluate_responses(...)
batch_runner.upload_eval_results(
project_name="my_project",
app_name="my_app",
results=results
)
Source code in llama_index/core/evaluation/batch_runner.py
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 | |
ContextRelevancyEvaluator #
Bases: BaseEvaluator
Context relevancy evaluator.
Evaluates the relevancy of retrieved contexts to a query. This evaluator considers the query string and retrieved contexts.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
raise_error
|
Optional[bool]
|
Whether to raise an error if the response is invalid. Defaults to False. |
False
|
eval_template
|
Optional[Union[str, BasePromptTemplate]]
|
The template to use for evaluation. |
None
|
refine_template
|
Optional[Union[str, BasePromptTemplate]]
|
The template to use for refinement. |
None
|
Source code in llama_index/core/evaluation/context_relevancy.py
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | |
aevaluate
async
#
aevaluate(query: str | None = None, response: str | None = None, contexts: Sequence[str] | None = None, sleep_time_in_seconds: int = 0, **kwargs: Any) -> EvaluationResult
Evaluate whether the contexts is relevant to the query.
Source code in llama_index/core/evaluation/context_relevancy.py
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | |
CorrectnessEvaluator #
Bases: BaseEvaluator
Correctness evaluator.
Evaluates the correctness of a question answering system.
This evaluator depends on reference answer to be provided, in addition to the
query string and response string.
It outputs a score between 1 and 5, where 1 is the worst and 5 is the best, along with a reasoning for the score. Passing is defined as a score greater than or equal to the given threshold.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
eval_template
|
Optional[Union[BasePromptTemplate, str]]
|
Template for the evaluation prompt. |
None
|
score_threshold
|
float
|
Numerical threshold for passing the evaluation, defaults to 4.0. |
4.0
|
Source code in llama_index/core/evaluation/correctness.py
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 | |
DatasetGenerator #
Bases: PromptMixin
Generate dataset (question/ question-answer pairs) based on the given documents.
NOTE: this is a beta feature, subject to change!
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
nodes
|
List[Node]
|
List of nodes. (Optional) |
required |
llm
|
LLM
|
Language model. |
None
|
callback_manager
|
CallbackManager
|
Callback manager. |
None
|
num_questions_per_chunk
|
int
|
number of question to be generated per chunk. Each document is chunked of size 512 words. |
10
|
text_question_template
|
BasePromptTemplate | None
|
Question generation template. |
None
|
question_gen_query
|
str | None
|
Question generation query. |
None
|
Source code in llama_index/core/evaluation/dataset_generation.py
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 | |
from_documents
classmethod
#
from_documents(documents: List[Document], llm: Optional[LLM] = None, transformations: Optional[List[TransformComponent]] = None, callback_manager: Optional[CallbackManager] = None, num_questions_per_chunk: int = 10, text_question_template: BasePromptTemplate | None = None, text_qa_template: BasePromptTemplate | None = None, question_gen_query: str | None = None, required_keywords: List[str] | None = None, exclude_keywords: List[str] | None = None, show_progress: bool = False) -> DatasetGenerator
Generate dataset from documents.
Source code in llama_index/core/evaluation/dataset_generation.py
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | |
agenerate_questions_from_nodes
async
#
agenerate_questions_from_nodes(num: int | None = None) -> List[str]
Generates questions for each document.
Source code in llama_index/core/evaluation/dataset_generation.py
299 300 301 302 303 304 | |
agenerate_dataset_from_nodes
async
#
agenerate_dataset_from_nodes(num: int | None = None) -> QueryResponseDataset
Generates questions for each document.
Source code in llama_index/core/evaluation/dataset_generation.py
306 307 308 309 310 311 312 | |
generate_questions_from_nodes #
generate_questions_from_nodes(num: int | None = None) -> List[str]
Generates questions for each document.
Source code in llama_index/core/evaluation/dataset_generation.py
314 315 316 | |
generate_dataset_from_nodes #
generate_dataset_from_nodes(num: int | None = None) -> QueryResponseDataset
Generates questions for each document.
Source code in llama_index/core/evaluation/dataset_generation.py
318 319 320 321 322 | |
QueryResponseDataset #
Bases: BaseModel
Query Response Dataset.
The response can be empty if the dataset is generated from documents.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
queries
|
Dict[str, str]
|
Query id -> query. |
required |
responses
|
Dict[str, str]
|
Query id -> response. |
required |
Source code in llama_index/core/evaluation/dataset_generation.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | |
from_qr_pairs
classmethod
#
from_qr_pairs(qr_pairs: List[Tuple[str, str]]) -> QueryResponseDataset
Create from qr pairs.
Source code in llama_index/core/evaluation/dataset_generation.py
71 72 73 74 75 76 77 78 79 80 | |
save_json #
save_json(path: str) -> None
Save json.
Source code in llama_index/core/evaluation/dataset_generation.py
100 101 102 103 | |
from_json
classmethod
#
from_json(path: str) -> QueryResponseDataset
Load json.
Source code in llama_index/core/evaluation/dataset_generation.py
105 106 107 108 109 110 | |
FaithfulnessEvaluator #
Bases: BaseEvaluator
Faithfulness evaluator.
Evaluates whether a response is faithful to the contexts (i.e. whether the response is supported by the contexts or hallucinated.)
This evaluator only considers the response string and the list of context strings.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
raise_error
|
bool
|
Whether to raise an error when the response is invalid. Defaults to False. |
False
|
eval_template
|
Optional[Union[str, BasePromptTemplate]]
|
The template to use for evaluation. |
None
|
refine_template
|
Optional[Union[str, BasePromptTemplate]]
|
The template to use for refining the evaluation. |
None
|
Source code in llama_index/core/evaluation/faithfulness.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | |
aevaluate
async
#
aevaluate(query: str | None = None, response: str | None = None, contexts: Sequence[str] | None = None, sleep_time_in_seconds: int = 0, **kwargs: Any) -> EvaluationResult
Evaluate whether the response is faithful to the contexts.
Source code in llama_index/core/evaluation/faithfulness.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | |
GuidelineEvaluator #
Bases: BaseEvaluator
Guideline evaluator.
Evaluates whether a query and response pair passes the given guidelines.
This evaluator only considers the query string and the response string.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
guidelines
|
Optional[str]
|
User-added guidelines to use for evaluation. Defaults to None, which uses the default guidelines. |
None
|
eval_template
|
Optional[Union[str, BasePromptTemplate]]
|
The template to use for evaluation. |
None
|
Source code in llama_index/core/evaluation/guideline.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | |
aevaluate
async
#
aevaluate(query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, sleep_time_in_seconds: int = 0, **kwargs: Any) -> EvaluationResult
Evaluate whether the query and response pair passes the guidelines.
Source code in llama_index/core/evaluation/guideline.py
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | |
PairwiseComparisonEvaluator #
Bases: BaseEvaluator
Pairwise comparison evaluator.
Evaluates the quality of a response vs. a "reference" response given a question by having an LLM judge which response is better.
Outputs whether the response given is better than the reference response.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
eval_template
|
Optional[Union[str, BasePromptTemplate]]
|
The template to use for evaluation. |
None
|
enforce_consensus
|
bool
|
Whether to enforce consensus (consistency if we flip the order of the answers). Defaults to True. |
True
|
Source code in llama_index/core/evaluation/pairwise.py
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | |
RelevancyEvaluator #
Bases: BaseEvaluator
Relenvancy evaluator.
Evaluates the relevancy of retrieved contexts and response to a query. This evaluator considers the query string, retrieved contexts, and response string.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
raise_error
|
Optional[bool]
|
Whether to raise an error if the response is invalid. Defaults to False. |
False
|
eval_template
|
Optional[Union[str, BasePromptTemplate]]
|
The template to use for evaluation. |
None
|
refine_template
|
Optional[Union[str, BasePromptTemplate]]
|
The template to use for refinement. |
None
|
Source code in llama_index/core/evaluation/relevancy.py
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | |
aevaluate
async
#
aevaluate(query: str | None = None, response: str | None = None, contexts: Sequence[str] | None = None, sleep_time_in_seconds: int = 0, **kwargs: Any) -> EvaluationResult
Evaluate whether the contexts and response are relevant to the query.
Source code in llama_index/core/evaluation/relevancy.py
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | |
BaseRetrievalEvaluator #
Bases: BaseModel
Base Retrieval Evaluator class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
metrics
|
List[BaseRetrievalMetric]
|
List of metrics to evaluate |
required |
Source code in llama_index/core/evaluation/retrieval/base.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | |
from_metric_names
classmethod
#
from_metric_names(metric_names: List[str], **kwargs: Any) -> BaseRetrievalEvaluator
Create evaluator from metric names.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
metric_names
|
List[str]
|
List of metric names |
required |
**kwargs
|
Any
|
Additional arguments for the evaluator |
{}
|
Source code in llama_index/core/evaluation/retrieval/base.py
85 86 87 88 89 90 91 92 93 94 95 96 97 98 | |
evaluate #
evaluate(query: str, expected_ids: List[str], expected_texts: Optional[List[str]] = None, mode: RetrievalEvalMode = TEXT, **kwargs: Any) -> RetrievalEvalResult
Run evaluation results with query string and expected ids.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
str
|
Query string |
required |
expected_ids
|
List[str]
|
Expected ids |
required |
Returns:
| Name | Type | Description |
|---|---|---|
RetrievalEvalResult |
RetrievalEvalResult
|
Evaluation result |
Source code in llama_index/core/evaluation/retrieval/base.py
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | |
aevaluate
async
#
aevaluate(query: str, expected_ids: List[str], expected_texts: Optional[List[str]] = None, mode: RetrievalEvalMode = TEXT, **kwargs: Any) -> RetrievalEvalResult
Run evaluation with query string, retrieved contexts, and generated response string.
Subclasses can override this method to provide custom evaluation logic and take in additional arguments.
Source code in llama_index/core/evaluation/retrieval/base.py
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | |
aevaluate_dataset
async
#
aevaluate_dataset(dataset: EmbeddingQAFinetuneDataset, workers: int = 2, show_progress: bool = False, **kwargs: Any) -> List[RetrievalEvalResult]
Run evaluation with dataset.
Source code in llama_index/core/evaluation/retrieval/base.py
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | |
RetrievalEvalResult #
Bases: BaseModel
Retrieval eval result.
NOTE: this abstraction might change in the future.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
str
|
Query string |
required |
expected_ids
|
List[str]
|
Expected ids |
required |
expected_texts
|
List[str] | None
|
Expected texts associated with nodes provided in |
None
|
retrieved_ids
|
List[str]
|
Retrieved ids |
required |
retrieved_texts
|
List[str]
|
Retrieved texts |
required |
mode
|
RetrievalEvalMode
|
text or image |
<RetrievalEvalMode.TEXT: 'text'>
|
metric_dict
|
Dict[str, RetrievalMetricResult]
|
Metric dictionary for the evaluation |
required |
Attributes:
| Name | Type | Description |
|---|---|---|
query |
str
|
Query string |
expected_ids |
List[str]
|
Expected ids |
retrieved_ids |
List[str]
|
Retrieved ids |
metric_dict |
Dict[str, BaseRetrievalMetric]
|
Metric dictionary for the evaluation |
Source code in llama_index/core/evaluation/retrieval/base.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | |
MultiModalRetrieverEvaluator #
Bases: BaseRetrievalEvaluator
Retriever evaluator.
This module will evaluate a retriever using a set of metrics.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
metrics
|
List[BaseRetrievalMetric]
|
Sequence of metrics to evaluate |
required |
retriever
|
BaseRetriever
|
Retriever to evaluate. |
required |
node_postprocessors
|
Optional[List[BaseNodePostprocessor]]
|
Post-processor to apply after retrieval. |
None
|
Source code in llama_index/core/evaluation/retrieval/evaluator.py
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 | |
RetrieverEvaluator #
Bases: BaseRetrievalEvaluator
Retriever evaluator.
This module will evaluate a retriever using a set of metrics.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
metrics
|
List[BaseRetrievalMetric]
|
Sequence of metrics to evaluate |
required |
retriever
|
BaseRetriever
|
Retriever to evaluate. |
required |
node_postprocessors
|
Optional[List[BaseNodePostprocessor]]
|
Post-processor to apply after retrieval. |
None
|
Source code in llama_index/core/evaluation/retrieval/evaluator.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | |
MRR #
Bases: BaseRetrievalMetric
MRR (Mean Reciprocal Rank) metric with two calculation options.
- The default method calculates the reciprocal rank of the first relevant retrieved document.
- The more granular method sums the reciprocal ranks of all relevant retrieved documents and divides by the count of relevant documents.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
use_granular_mrr
|
bool
|
|
False
|
Attributes:
| Name | Type | Description |
|---|---|---|
metric_name |
str
|
The name of the metric. |
use_granular_mrr |
bool
|
Determines whether to use the granular method for calculation. |
Source code in llama_index/core/evaluation/retrieval/metrics.py
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 | |
compute #
compute(query: Optional[str] = None, expected_ids: Optional[List[str]] = None, retrieved_ids: Optional[List[str]] = None, expected_texts: Optional[List[str]] = None, retrieved_texts: Optional[List[str]] = None, **kwargs: Any) -> RetrievalMetricResult
Compute MRR based on the provided inputs and selected method.
Parameters#
query (Optional[str]): The query string (not used in the current implementation).
expected_ids (Optional[List[str]]): Expected document IDs.
retrieved_ids (Optional[List[str]]): Retrieved document IDs.
expected_texts (Optional[List[str]]): Expected texts (not used in the current implementation).
retrieved_texts (Optional[List[str]]): Retrieved texts (not used in the current implementation).
Raises#
ValueError: If the necessary IDs are not provided.
Returns#
RetrievalMetricResult: The result with the computed MRR score.
Source code in llama_index/core/evaluation/retrieval/metrics.py
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 | |
HitRate #
Bases: BaseRetrievalMetric
Hit rate metric: Compute hit rate with two calculation options.
- The default method checks for a single match between any of the retrieved docs and expected docs.
- The more granular method checks for all potential matches between retrieved docs and expected docs.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
use_granular_hit_rate
|
bool
|
|
False
|
Attributes:
| Name | Type | Description |
|---|---|---|
metric_name |
str
|
The name of the metric. |
use_granular_hit_rate |
bool
|
Determines whether to use the granular method for calculation. |
Source code in llama_index/core/evaluation/retrieval/metrics.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | |
compute #
compute(query: Optional[str] = None, expected_ids: Optional[List[str]] = None, retrieved_ids: Optional[List[str]] = None, expected_texts: Optional[List[str]] = None, retrieved_texts: Optional[List[str]] = None, **kwargs: Any) -> RetrievalMetricResult
Compute metric based on the provided inputs.
Parameters#
query (Optional[str]): The query string (not used in the current implementation).
expected_ids (Optional[List[str]]): Expected document IDs.
retrieved_ids (Optional[List[str]]): Retrieved document IDs.
expected_texts (Optional[List[str]]): Expected texts (not used in the current implementation).
retrieved_texts (Optional[List[str]]): Retrieved texts (not used in the current implementation).
Raises#
ValueError: If the necessary IDs are not provided.
Returns#
RetrievalMetricResult: The result with the computed hit rate score.
Source code in llama_index/core/evaluation/retrieval/metrics.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | |
RetrievalMetricResult #
Bases: BaseModel
Metric result.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
score
|
float
|
Score for the metric |
required |
Attributes:
| Name | Type | Description |
|---|---|---|
score |
float
|
Score for the metric |
metadata |
Dict[str, Any]
|
Metadata for the metric result |
Source code in llama_index/core/evaluation/retrieval/metrics_base.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | |
SemanticSimilarityEvaluator #
Bases: BaseEvaluator
Embedding similarity evaluator.
Evaluate the quality of a question answering system by comparing the similarity between embeddings of the generated answer and the reference answer.
Inspired by this paper: - Semantic Answer Similarity for Evaluating Question Answering Models https://arxiv.org/pdf/2108.06130.pdf
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
similarity_threshold
|
float
|
Embedding similarity threshold for "passing". Defaults to 0.8. |
0.8
|
Source code in llama_index/core/evaluation/semantic_similarity.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
EmbeddingQAFinetuneDataset #
Bases: BaseModel
Embedding QA Finetuning Dataset.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
queries
|
Dict[str, str]
|
Dict id -> query. |
required |
corpus
|
Dict[str, str]
|
Dict id -> string. |
required |
relevant_docs
|
Dict[str, List[str]]
|
Dict query id -> list of doc ids. |
required |
mode
|
str
|
|
'text'
|
Source code in llama_index/core/llama_dataset/legacy/embedding.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | |
query_docid_pairs
property
#
query_docid_pairs: List[Tuple[str, List[str]]]
Get query, relevant doc ids.
save_json #
save_json(path: str) -> None
Save json.
Source code in llama_index/core/llama_dataset/legacy/embedding.py
40 41 42 43 | |
from_json
classmethod
#
from_json(path: str) -> EmbeddingQAFinetuneDataset
Load json.
Source code in llama_index/core/llama_dataset/legacy/embedding.py
45 46 47 48 49 50 | |
get_retrieval_results_df #
get_retrieval_results_df(names: List[str], results_arr: List[List[RetrievalEvalResult]], metric_keys: Optional[List[str]] = None) -> Any
Display retrieval results.
Source code in llama_index/core/evaluation/notebook_utils.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | |
resolve_metrics #
resolve_metrics(metrics: List[str]) -> List[Type[BaseRetrievalMetric]]
Resolve metrics from list of metric names.
Source code in llama_index/core/evaluation/retrieval/metrics.py
507 508 509 510 511 512 513 | |
generate_qa_embedding_pairs #
generate_qa_embedding_pairs(nodes: List[TextNode], llm: Optional[LLM] = None, qa_generate_prompt_tmpl: str = DEFAULT_QA_GENERATE_PROMPT_TMPL, num_questions_per_chunk: int = 2) -> EmbeddingQAFinetuneDataset
Generate examples given a set of nodes.
Source code in llama_index/core/llama_dataset/legacy/embedding.py
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | |
options: members: - CorrectnessEvaluator