Skip to content

Summary

LlamaIndex data structures.

ComposableGraph #

Composable graph.

Source code in llama_index/core/indices/composability/graph.py
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
class ComposableGraph:
    """Composable graph."""

    def __init__(
        self,
        all_indices: Dict[str, BaseIndex],
        root_id: str,
        storage_context: Optional[StorageContext] = None,
    ) -> None:
        """Init params."""
        self._all_indices = all_indices
        self._root_id = root_id
        self.storage_context = storage_context

    @property
    def root_id(self) -> str:
        return self._root_id

    @property
    def all_indices(self) -> Dict[str, BaseIndex]:
        return self._all_indices

    @property
    def root_index(self) -> BaseIndex:
        return self._all_indices[self._root_id]

    @property
    def index_struct(self) -> IndexStruct:
        return self._all_indices[self._root_id].index_struct

    @classmethod
    def from_indices(
        cls,
        root_index_cls: Type[BaseIndex],
        children_indices: Sequence[BaseIndex],
        index_summaries: Optional[Sequence[str]] = None,
        storage_context: Optional[StorageContext] = None,
        **kwargs: Any,
    ) -> "ComposableGraph":  # type: ignore
        """Create composable graph using this index class as the root."""
        from llama_index.core import Settings

        with Settings.callback_manager.as_trace("graph_construction"):
            if index_summaries is None:
                for index in children_indices:
                    if index.index_struct.summary is None:
                        raise ValueError(
                            "Summary must be set for children indices. "
                            "If the index does a summary "
                            "(through index.index_struct.summary), then "
                            "it must be specified with then `index_summaries` "
                            "argument in this function. We will support "
                            "automatically setting the summary in the future."
                        )
                index_summaries = [
                    index.index_struct.summary for index in children_indices
                ]
            else:
                # set summaries for each index
                for index, summary in zip(children_indices, index_summaries):
                    index.index_struct.summary = summary

            if len(children_indices) != len(index_summaries):
                raise ValueError("indices and index_summaries must have same length!")

            # construct index nodes
            index_nodes = []
            for index, summary in zip(children_indices, index_summaries):
                assert isinstance(index.index_struct, IndexStruct)
                index_node = IndexNode(
                    text=summary,
                    index_id=index.index_id,
                    relationships={
                        NodeRelationship.SOURCE: RelatedNodeInfo(
                            node_id=index.index_id, node_type=ObjectType.INDEX
                        )
                    },
                )
                index_nodes.append(index_node)

            # construct root index
            root_index = root_index_cls(
                nodes=index_nodes,
                storage_context=storage_context,
                **kwargs,
            )
            # type: ignore
            all_indices: List[BaseIndex] = [
                *cast(List[BaseIndex], children_indices),
                root_index,
            ]

            return cls(
                all_indices={index.index_id: index for index in all_indices},
                root_id=root_index.index_id,
                storage_context=storage_context,
            )

    def get_index(self, index_struct_id: Optional[str] = None) -> BaseIndex:
        """Get index from index struct id."""
        if index_struct_id is None:
            index_struct_id = self._root_id
        return self._all_indices[index_struct_id]

    def as_query_engine(self, **kwargs: Any) -> BaseQueryEngine:
        # NOTE: lazy import
        from llama_index.core.query_engine.graph_query_engine import (
            ComposableGraphQueryEngine,
        )

        return ComposableGraphQueryEngine(self, **kwargs)

from_indices classmethod #

from_indices(root_index_cls: Type[BaseIndex], children_indices: Sequence[BaseIndex], index_summaries: Optional[Sequence[str]] = None, storage_context: Optional[StorageContext] = None, **kwargs: Any) -> ComposableGraph

Create composable graph using this index class as the root.

Source code in llama_index/core/indices/composability/graph.py
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
@classmethod
def from_indices(
    cls,
    root_index_cls: Type[BaseIndex],
    children_indices: Sequence[BaseIndex],
    index_summaries: Optional[Sequence[str]] = None,
    storage_context: Optional[StorageContext] = None,
    **kwargs: Any,
) -> "ComposableGraph":  # type: ignore
    """Create composable graph using this index class as the root."""
    from llama_index.core import Settings

    with Settings.callback_manager.as_trace("graph_construction"):
        if index_summaries is None:
            for index in children_indices:
                if index.index_struct.summary is None:
                    raise ValueError(
                        "Summary must be set for children indices. "
                        "If the index does a summary "
                        "(through index.index_struct.summary), then "
                        "it must be specified with then `index_summaries` "
                        "argument in this function. We will support "
                        "automatically setting the summary in the future."
                    )
            index_summaries = [
                index.index_struct.summary for index in children_indices
            ]
        else:
            # set summaries for each index
            for index, summary in zip(children_indices, index_summaries):
                index.index_struct.summary = summary

        if len(children_indices) != len(index_summaries):
            raise ValueError("indices and index_summaries must have same length!")

        # construct index nodes
        index_nodes = []
        for index, summary in zip(children_indices, index_summaries):
            assert isinstance(index.index_struct, IndexStruct)
            index_node = IndexNode(
                text=summary,
                index_id=index.index_id,
                relationships={
                    NodeRelationship.SOURCE: RelatedNodeInfo(
                        node_id=index.index_id, node_type=ObjectType.INDEX
                    )
                },
            )
            index_nodes.append(index_node)

        # construct root index
        root_index = root_index_cls(
            nodes=index_nodes,
            storage_context=storage_context,
            **kwargs,
        )
        # type: ignore
        all_indices: List[BaseIndex] = [
            *cast(List[BaseIndex], children_indices),
            root_index,
        ]

        return cls(
            all_indices={index.index_id: index for index in all_indices},
            root_id=root_index.index_id,
            storage_context=storage_context,
        )

get_index #

get_index(index_struct_id: Optional[str] = None) -> BaseIndex

Get index from index struct id.

Source code in llama_index/core/indices/composability/graph.py
115
116
117
118
119
def get_index(self, index_struct_id: Optional[str] = None) -> BaseIndex:
    """Get index from index struct id."""
    if index_struct_id is None:
        index_struct_id = self._root_id
    return self._all_indices[index_struct_id]

DocumentSummaryIndex #

Bases: BaseIndex[IndexDocumentSummary]

Document Summary Index.

Parameters:

Name Type Description Default
response_synthesizer BaseSynthesizer

A response synthesizer for generating summaries.

None
summary_query str

The query to use to generate the summary for each document.

DEFAULT_SUMMARY_QUERY
show_progress bool

Whether to show tqdm progress bars. Defaults to False.

False
embed_summaries bool

Whether to embed the summaries. This is required for running the default embedding-based retriever. Defaults to True.

True
Source code in llama_index/core/indices/document_summary/base.py
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
class DocumentSummaryIndex(BaseIndex[IndexDocumentSummary]):
    """
    Document Summary Index.

    Args:
        response_synthesizer (BaseSynthesizer): A response synthesizer for generating
            summaries.
        summary_query (str): The query to use to generate the summary for each document.
        show_progress (bool): Whether to show tqdm progress bars.
            Defaults to False.
        embed_summaries (bool): Whether to embed the summaries.
            This is required for running the default embedding-based retriever.
            Defaults to True.

    """

    index_struct_cls = IndexDocumentSummary

    def __init__(
        self,
        nodes: Optional[Sequence[BaseNode]] = None,
        objects: Optional[Sequence[IndexNode]] = None,
        index_struct: Optional[IndexDocumentSummary] = None,
        llm: Optional[LLM] = None,
        embed_model: Optional[BaseEmbedding] = None,
        storage_context: Optional[StorageContext] = None,
        response_synthesizer: Optional[BaseSynthesizer] = None,
        summary_query: str = DEFAULT_SUMMARY_QUERY,
        show_progress: bool = False,
        embed_summaries: bool = True,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        self._llm = llm or Settings.llm
        self._embed_model = embed_model or Settings.embed_model
        self._response_synthesizer = response_synthesizer or get_response_synthesizer(
            llm=self._llm, response_mode=ResponseMode.TREE_SUMMARIZE
        )
        self._summary_query = summary_query
        self._embed_summaries = embed_summaries

        super().__init__(
            nodes=nodes,
            index_struct=index_struct,
            storage_context=storage_context,
            show_progress=show_progress,
            objects=objects,
            **kwargs,
        )

    @property
    def vector_store(self) -> BasePydanticVectorStore:
        return self._vector_store

    def as_retriever(
        self,
        retriever_mode: Union[str, _RetrieverMode] = _RetrieverMode.EMBEDDING,
        **kwargs: Any,
    ) -> BaseRetriever:
        """
        Get retriever.

        Args:
            retriever_mode (Union[str, DocumentSummaryRetrieverMode]): A retriever mode.
                Defaults to DocumentSummaryRetrieverMode.EMBEDDING.

        """
        from llama_index.core.indices.document_summary.retrievers import (
            DocumentSummaryIndexEmbeddingRetriever,
            DocumentSummaryIndexLLMRetriever,
        )

        LLMRetriever = DocumentSummaryIndexLLMRetriever
        EmbeddingRetriever = DocumentSummaryIndexEmbeddingRetriever

        if retriever_mode == _RetrieverMode.EMBEDDING:
            if not self._embed_summaries:
                raise ValueError(
                    "Cannot use embedding retriever if embed_summaries is False"
                )

            return EmbeddingRetriever(
                self,
                object_map=self._object_map,
                embed_model=self._embed_model,
                **kwargs,
            )
        if retriever_mode == _RetrieverMode.LLM:
            return LLMRetriever(
                self, object_map=self._object_map, llm=self._llm, **kwargs
            )
        else:
            raise ValueError(f"Unknown retriever mode: {retriever_mode}")

    def get_document_summary(self, doc_id: str) -> str:
        """
        Get document summary by doc id.

        Args:
            doc_id (str): A document id.

        """
        if doc_id not in self._index_struct.doc_id_to_summary_id:
            raise ValueError(f"doc_id {doc_id} not in index")
        summary_id = self._index_struct.doc_id_to_summary_id[doc_id]
        return self.docstore.get_node(summary_id).get_content()

    def _add_nodes_to_index(
        self,
        index_struct: IndexDocumentSummary,
        nodes: Sequence[BaseNode],
        show_progress: bool = False,
    ) -> None:
        """Add nodes to index."""
        doc_id_to_nodes = defaultdict(list)
        for node in nodes:
            if node.ref_doc_id is None:
                raise ValueError(
                    "ref_doc_id of node cannot be None when building a document "
                    "summary index"
                )
            doc_id_to_nodes[node.ref_doc_id].append(node)

        summary_node_dict = {}
        items = doc_id_to_nodes.items()
        iterable_with_progress = get_tqdm_iterable(
            items, show_progress, "Summarizing documents"
        )

        for doc_id, nodes in iterable_with_progress:
            print(f"current doc id: {doc_id}")
            nodes_with_scores = [NodeWithScore(node=n) for n in nodes]
            # get the summary for each doc_id
            summary_response = self._response_synthesizer.synthesize(
                query=self._summary_query,
                nodes=nodes_with_scores,
            )
            summary_response = cast(Response, summary_response)
            docid_first_node = doc_id_to_nodes.get(doc_id, [TextNode()])[0]
            summary_node_dict[doc_id] = TextNode(
                text=summary_response.response,
                relationships={
                    NodeRelationship.SOURCE: RelatedNodeInfo(node_id=doc_id)
                },
                metadata=docid_first_node.metadata,
                excluded_embed_metadata_keys=docid_first_node.excluded_embed_metadata_keys,
                excluded_llm_metadata_keys=docid_first_node.excluded_llm_metadata_keys,
            )
            self.docstore.add_documents([summary_node_dict[doc_id]])
            logger.info(
                f"> Generated summary for doc {doc_id}: {summary_response.response}"
            )

        for doc_id, nodes in doc_id_to_nodes.items():
            index_struct.add_summary_and_nodes(summary_node_dict[doc_id], nodes)

        if self._embed_summaries:
            summary_nodes = list(summary_node_dict.values())
            id_to_embed_map = embed_nodes(
                summary_nodes, self._embed_model, show_progress=show_progress
            )

            summary_nodes_with_embedding = []
            for node in summary_nodes:
                node_with_embedding = node.model_copy()
                node_with_embedding.embedding = id_to_embed_map[node.node_id]
                summary_nodes_with_embedding.append(node_with_embedding)
            self._vector_store.add(summary_nodes_with_embedding)

    def _build_index_from_nodes(
        self,
        nodes: Sequence[BaseNode],
        **build_kwargs: Any,
    ) -> IndexDocumentSummary:
        """Build index from nodes."""
        # first get doc_id to nodes_dict, generate a summary for each doc_id,
        # then build the index struct
        index_struct = IndexDocumentSummary()
        self._add_nodes_to_index(index_struct, nodes, self._show_progress)
        return index_struct

    def _insert(self, nodes: Sequence[BaseNode], **insert_kwargs: Any) -> None:
        """Insert a document."""
        self._add_nodes_to_index(self._index_struct, nodes)

    def _delete_node(self, node_id: str, **delete_kwargs: Any) -> None:
        pass

    def delete_nodes(
        self,
        node_ids: List[str],
        delete_from_docstore: bool = False,
        **delete_kwargs: Any,
    ) -> None:
        """
        Delete a list of nodes from the index.

        Args:
            node_ids (List[str]): A list of node_ids from the nodes to delete

        """
        index_nodes = self._index_struct.node_id_to_summary_id.keys()
        for node in node_ids:
            if node not in index_nodes:
                logger.warning(f"node_id {node} not found, will not be deleted.")
                node_ids.remove(node)

        self._index_struct.delete_nodes(node_ids)

        remove_summary_ids = [
            summary_id
            for summary_id in self._index_struct.summary_id_to_node_ids
            if len(self._index_struct.summary_id_to_node_ids[summary_id]) == 0
        ]

        remove_docs = [
            doc_id
            for doc_id in self._index_struct.doc_id_to_summary_id
            if self._index_struct.doc_id_to_summary_id[doc_id] in remove_summary_ids
        ]

        for doc_id in remove_docs:
            self.delete_ref_doc(doc_id)

    def delete_ref_doc(
        self, ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any
    ) -> None:
        """
        Delete a document from the index.
        All nodes in the index related to the document will be deleted.
        """
        ref_doc_info = self.docstore.get_ref_doc_info(ref_doc_id)
        if ref_doc_info is None:
            logger.warning(f"ref_doc_id {ref_doc_id} not found, nothing deleted.")
            return
        self._index_struct.delete(ref_doc_id)
        self._vector_store.delete(ref_doc_id)

        if delete_from_docstore:
            self.docstore.delete_ref_doc(ref_doc_id, raise_error=False)

        self._storage_context.index_store.add_index_struct(self._index_struct)

    @property
    def ref_doc_info(self) -> Dict[str, RefDocInfo]:
        """Retrieve a dict mapping of ingested documents and their nodes+metadata."""
        ref_doc_ids = list(self._index_struct.doc_id_to_summary_id.keys())

        all_ref_doc_info = {}
        for ref_doc_id in ref_doc_ids:
            ref_doc_info = self.docstore.get_ref_doc_info(ref_doc_id)
            if not ref_doc_info:
                continue

            all_ref_doc_info[ref_doc_id] = ref_doc_info
        return all_ref_doc_info

ref_doc_info property #

ref_doc_info: Dict[str, RefDocInfo]

Retrieve a dict mapping of ingested documents and their nodes+metadata.

as_retriever #

as_retriever(retriever_mode: Union[str, _RetrieverMode] = EMBEDDING, **kwargs: Any) -> BaseRetriever

Get retriever.

Parameters:

Name Type Description Default
retriever_mode Union[str, DocumentSummaryRetrieverMode]

A retriever mode. Defaults to DocumentSummaryRetrieverMode.EMBEDDING.

EMBEDDING
Source code in llama_index/core/indices/document_summary/base.py
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
def as_retriever(
    self,
    retriever_mode: Union[str, _RetrieverMode] = _RetrieverMode.EMBEDDING,
    **kwargs: Any,
) -> BaseRetriever:
    """
    Get retriever.

    Args:
        retriever_mode (Union[str, DocumentSummaryRetrieverMode]): A retriever mode.
            Defaults to DocumentSummaryRetrieverMode.EMBEDDING.

    """
    from llama_index.core.indices.document_summary.retrievers import (
        DocumentSummaryIndexEmbeddingRetriever,
        DocumentSummaryIndexLLMRetriever,
    )

    LLMRetriever = DocumentSummaryIndexLLMRetriever
    EmbeddingRetriever = DocumentSummaryIndexEmbeddingRetriever

    if retriever_mode == _RetrieverMode.EMBEDDING:
        if not self._embed_summaries:
            raise ValueError(
                "Cannot use embedding retriever if embed_summaries is False"
            )

        return EmbeddingRetriever(
            self,
            object_map=self._object_map,
            embed_model=self._embed_model,
            **kwargs,
        )
    if retriever_mode == _RetrieverMode.LLM:
        return LLMRetriever(
            self, object_map=self._object_map, llm=self._llm, **kwargs
        )
    else:
        raise ValueError(f"Unknown retriever mode: {retriever_mode}")

get_document_summary #

get_document_summary(doc_id: str) -> str

Get document summary by doc id.

Parameters:

Name Type Description Default
doc_id str

A document id.

required
Source code in llama_index/core/indices/document_summary/base.py
152
153
154
155
156
157
158
159
160
161
162
163
def get_document_summary(self, doc_id: str) -> str:
    """
    Get document summary by doc id.

    Args:
        doc_id (str): A document id.

    """
    if doc_id not in self._index_struct.doc_id_to_summary_id:
        raise ValueError(f"doc_id {doc_id} not in index")
    summary_id = self._index_struct.doc_id_to_summary_id[doc_id]
    return self.docstore.get_node(summary_id).get_content()

delete_nodes #

delete_nodes(node_ids: List[str], delete_from_docstore: bool = False, **delete_kwargs: Any) -> None

Delete a list of nodes from the index.

Parameters:

Name Type Description Default
node_ids List[str]

A list of node_ids from the nodes to delete

required
Source code in llama_index/core/indices/document_summary/base.py
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
def delete_nodes(
    self,
    node_ids: List[str],
    delete_from_docstore: bool = False,
    **delete_kwargs: Any,
) -> None:
    """
    Delete a list of nodes from the index.

    Args:
        node_ids (List[str]): A list of node_ids from the nodes to delete

    """
    index_nodes = self._index_struct.node_id_to_summary_id.keys()
    for node in node_ids:
        if node not in index_nodes:
            logger.warning(f"node_id {node} not found, will not be deleted.")
            node_ids.remove(node)

    self._index_struct.delete_nodes(node_ids)

    remove_summary_ids = [
        summary_id
        for summary_id in self._index_struct.summary_id_to_node_ids
        if len(self._index_struct.summary_id_to_node_ids[summary_id]) == 0
    ]

    remove_docs = [
        doc_id
        for doc_id in self._index_struct.doc_id_to_summary_id
        if self._index_struct.doc_id_to_summary_id[doc_id] in remove_summary_ids
    ]

    for doc_id in remove_docs:
        self.delete_ref_doc(doc_id)

delete_ref_doc #

delete_ref_doc(ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any) -> None

Delete a document from the index. All nodes in the index related to the document will be deleted.

Source code in llama_index/core/indices/document_summary/base.py
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
def delete_ref_doc(
    self, ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any
) -> None:
    """
    Delete a document from the index.
    All nodes in the index related to the document will be deleted.
    """
    ref_doc_info = self.docstore.get_ref_doc_info(ref_doc_id)
    if ref_doc_info is None:
        logger.warning(f"ref_doc_id {ref_doc_id} not found, nothing deleted.")
        return
    self._index_struct.delete(ref_doc_id)
    self._vector_store.delete(ref_doc_id)

    if delete_from_docstore:
        self.docstore.delete_ref_doc(ref_doc_id, raise_error=False)

    self._storage_context.index_store.add_index_struct(self._index_struct)

EmptyIndex #

Bases: BaseIndex[EmptyIndexStruct]

Empty Index.

An index that doesn't contain any documents. Used for pure LLM calls. NOTE: this exists because an empty index it allows certain properties, such as the ability to be composed with other indices + token counting + others.

Source code in llama_index/core/indices/empty/base.py
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
class EmptyIndex(BaseIndex[EmptyIndexStruct]):
    """
    Empty Index.

    An index that doesn't contain any documents. Used for
    pure LLM calls.
    NOTE: this exists because an empty index it allows certain properties,
    such as the ability to be composed with other indices + token
    counting + others.

    """

    index_struct_cls = EmptyIndexStruct

    def __init__(
        self,
        index_struct: Optional[EmptyIndexStruct] = None,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        super().__init__(
            nodes=None,
            index_struct=index_struct or EmptyIndexStruct(),
            **kwargs,
        )

    def as_retriever(self, **kwargs: Any) -> BaseRetriever:
        # NOTE: lazy import
        from llama_index.core.indices.empty.retrievers import EmptyIndexRetriever

        return EmptyIndexRetriever(self)

    def as_query_engine(
        self, llm: Optional[LLMType] = None, **kwargs: Any
    ) -> BaseQueryEngine:
        if "response_mode" not in kwargs:
            kwargs["response_mode"] = "generation"
        else:
            if kwargs["response_mode"] != "generation":
                raise ValueError("EmptyIndex only supports response_mode=generation.")

        return super().as_query_engine(llm=llm, **kwargs)

    def _build_index_from_nodes(
        self, nodes: Sequence[BaseNode], **build_kwargs: Any
    ) -> EmptyIndexStruct:
        """
        Build the index from documents.

        Args:
            documents (List[BaseDocument]): A list of documents.

        Returns:
            IndexList: The created summary index.

        """
        del nodes  # Unused
        return EmptyIndexStruct()

    def _insert(self, nodes: Sequence[BaseNode], **insert_kwargs: Any) -> None:
        """Insert a document."""
        del nodes  # Unused
        raise NotImplementedError("Cannot insert into an empty index.")

    def _delete_node(self, node_id: str, **delete_kwargs: Any) -> None:
        """Delete a node."""
        raise NotImplementedError("Cannot delete from an empty index.")

    @property
    def ref_doc_info(self) -> Dict[str, RefDocInfo]:
        """Retrieve a dict mapping of ingested documents and their nodes+metadata."""
        raise NotImplementedError("ref_doc_info not supported for an empty index.")

ref_doc_info property #

ref_doc_info: Dict[str, RefDocInfo]

Retrieve a dict mapping of ingested documents and their nodes+metadata.

KeywordTableIndex #

Bases: BaseKeywordTableIndex

Keyword Table Index.

This index uses a GPT model to extract keywords from the text.

Source code in llama_index/core/indices/keyword_table/base.py
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
class KeywordTableIndex(BaseKeywordTableIndex):
    """
    Keyword Table Index.

    This index uses a GPT model to extract keywords from the text.

    """

    def _extract_keywords(self, text: str) -> Set[str]:
        """Extract keywords from text."""
        response = self._llm.predict(
            self.keyword_extract_template,
            text=text,
        )
        return extract_keywords_given_response(response, start_token="KEYWORDS:")

    async def _async_extract_keywords(self, text: str) -> Set[str]:
        """Extract keywords from text."""
        response = await self._llm.apredict(
            self.keyword_extract_template,
            text=text,
        )
        return extract_keywords_given_response(response, start_token="KEYWORDS:")

RAKEKeywordTableIndex #

Bases: BaseKeywordTableIndex

RAKE Keyword Table Index.

This index uses a RAKE keyword extractor to extract keywords from the text.

Source code in llama_index/core/indices/keyword_table/rake_base.py
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class RAKEKeywordTableIndex(BaseKeywordTableIndex):
    """
    RAKE Keyword Table Index.

    This index uses a RAKE keyword extractor to extract keywords from the text.

    """

    def _extract_keywords(self, text: str) -> Set[str]:
        """Extract keywords from text."""
        return rake_extract_keywords(text, max_keywords=self.max_keywords_per_chunk)

    def as_retriever(
        self,
        retriever_mode: Union[
            str, KeywordTableRetrieverMode
        ] = KeywordTableRetrieverMode.RAKE,
        **kwargs: Any,
    ) -> BaseRetriever:
        return super().as_retriever(retriever_mode=retriever_mode, **kwargs)

SimpleKeywordTableIndex #

Bases: BaseKeywordTableIndex

Simple Keyword Table Index.

This index uses a simple regex extractor to extract keywords from the text.

Source code in llama_index/core/indices/keyword_table/simple_base.py
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class SimpleKeywordTableIndex(BaseKeywordTableIndex):
    """
    Simple Keyword Table Index.

    This index uses a simple regex extractor to extract keywords from the text.

    """

    def _extract_keywords(self, text: str) -> Set[str]:
        """Extract keywords from text."""
        return simple_extract_keywords(text, self.max_keywords_per_chunk)

    def as_retriever(
        self,
        retriever_mode: Union[
            str, KeywordTableRetrieverMode
        ] = KeywordTableRetrieverMode.SIMPLE,
        **kwargs: Any,
    ) -> BaseRetriever:
        return super().as_retriever(retriever_mode=retriever_mode, **kwargs)

KnowledgeGraphIndex #

Bases: BaseIndex[KG]

Knowledge Graph Index.

Build a KG by extracting triplets, and leveraging the KG during query-time.

Parameters:

Name Type Description Default
kg_triplet_extract_template BasePromptTemplate

The prompt to use for extracting triplets.

None
max_triplets_per_chunk int

The maximum number of triplets to extract.

10
storage_context Optional[StorageContext]

The storage context to use.

None
graph_store Optional[GraphStore]

The graph store to use.

required
show_progress bool

Whether to show tqdm progress bars. Defaults to False.

False
include_embeddings bool

Whether to include embeddings in the index. Defaults to False.

False
max_object_length int

The maximum length of the object in a triplet. Defaults to 128.

128
kg_triplet_extract_fn Optional[Callable]

The function to use for extracting triplets. Defaults to None.

None
Source code in llama_index/core/indices/knowledge_graph/base.py
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
@deprecated.deprecated(
    version="0.10.53",
    reason=(
        "The KnowledgeGraphIndex class has been deprecated. "
        "Please use the new PropertyGraphIndex class instead. "
        "If a certain graph store integration is missing in the new class, "
        "please open an issue on the GitHub repository or contribute it!"
    ),
)
class KnowledgeGraphIndex(BaseIndex[KG]):
    """
    Knowledge Graph Index.

    Build a KG by extracting triplets, and leveraging the KG during query-time.

    Args:
        kg_triplet_extract_template (BasePromptTemplate): The prompt to use for
            extracting triplets.
        max_triplets_per_chunk (int): The maximum number of triplets to extract.
        storage_context (Optional[StorageContext]): The storage context to use.
        graph_store (Optional[GraphStore]): The graph store to use.
        show_progress (bool): Whether to show tqdm progress bars. Defaults to False.
        include_embeddings (bool): Whether to include embeddings in the index.
            Defaults to False.
        max_object_length (int): The maximum length of the object in a triplet.
            Defaults to 128.
        kg_triplet_extract_fn (Optional[Callable]): The function to use for
            extracting triplets. Defaults to None.

    """

    index_struct_cls = KG

    def __init__(
        self,
        nodes: Optional[Sequence[BaseNode]] = None,
        objects: Optional[Sequence[IndexNode]] = None,
        index_struct: Optional[KG] = None,
        llm: Optional[LLM] = None,
        embed_model: Optional[BaseEmbedding] = None,
        storage_context: Optional[StorageContext] = None,
        kg_triplet_extract_template: Optional[BasePromptTemplate] = None,
        max_triplets_per_chunk: int = 10,
        include_embeddings: bool = False,
        show_progress: bool = False,
        max_object_length: int = 128,
        kg_triplet_extract_fn: Optional[Callable] = None,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        # need to set parameters before building index in base class.
        self.include_embeddings = include_embeddings
        self.max_triplets_per_chunk = max_triplets_per_chunk
        self.kg_triplet_extract_template = (
            kg_triplet_extract_template or DEFAULT_KG_TRIPLET_EXTRACT_PROMPT
        )
        # NOTE: Partially format keyword extract template here.
        self.kg_triplet_extract_template = (
            self.kg_triplet_extract_template.partial_format(
                max_knowledge_triplets=self.max_triplets_per_chunk
            )
        )
        self._max_object_length = max_object_length
        self._kg_triplet_extract_fn = kg_triplet_extract_fn

        self._llm = llm or Settings.llm
        self._embed_model = embed_model or Settings.embed_model

        super().__init__(
            nodes=nodes,
            index_struct=index_struct,
            storage_context=storage_context,
            show_progress=show_progress,
            objects=objects,
            **kwargs,
        )

        # TODO: legacy conversion - remove in next release
        if (
            len(self.index_struct.table) > 0
            and isinstance(self.graph_store, SimpleGraphStore)
            and len(self.graph_store._data.graph_dict) == 0
        ):
            logger.warning("Upgrading previously saved KG index to new storage format.")
            self.graph_store._data.graph_dict = self.index_struct.rel_map

    @property
    def graph_store(self) -> GraphStore:
        return self._graph_store

    def as_retriever(
        self,
        retriever_mode: Optional[str] = None,
        embed_model: Optional[BaseEmbedding] = None,
        **kwargs: Any,
    ) -> BaseRetriever:
        from llama_index.core.indices.knowledge_graph.retrievers import (
            KGRetrieverMode,
            KGTableRetriever,
        )

        if len(self.index_struct.embedding_dict) > 0 and retriever_mode is None:
            retriever_mode = KGRetrieverMode.HYBRID
        elif retriever_mode is None:
            retriever_mode = KGRetrieverMode.KEYWORD
        elif isinstance(retriever_mode, str):
            retriever_mode = KGRetrieverMode(retriever_mode)
        else:
            retriever_mode = retriever_mode

        return KGTableRetriever(
            self,
            object_map=self._object_map,
            llm=self._llm,
            embed_model=embed_model or self._embed_model,
            retriever_mode=retriever_mode,
            **kwargs,
        )

    def _extract_triplets(self, text: str) -> List[Tuple[str, str, str]]:
        if self._kg_triplet_extract_fn is not None:
            return self._kg_triplet_extract_fn(text)
        else:
            return self._llm_extract_triplets(text)

    def _llm_extract_triplets(self, text: str) -> List[Tuple[str, str, str]]:
        """Extract keywords from text."""
        response = self._llm.predict(
            self.kg_triplet_extract_template,
            text=text,
        )
        return self._parse_triplet_response(
            response, max_length=self._max_object_length
        )

    @staticmethod
    def _parse_triplet_response(
        response: str, max_length: int = 128
    ) -> List[Tuple[str, str, str]]:
        knowledge_strs = response.strip().split("\n")
        results = []
        for text in knowledge_strs:
            if "(" not in text or ")" not in text or text.index(")") < text.index("("):
                # skip empty lines and non-triplets
                continue
            triplet_part = text[text.index("(") + 1 : text.index(")")]
            tokens = triplet_part.split(",")
            if len(tokens) != 3:
                continue

            if any(len(s.encode("utf-8")) > max_length for s in tokens):
                # We count byte-length instead of len() for UTF-8 chars,
                # will skip if any of the tokens are too long.
                # This is normally due to a poorly formatted triplet
                # extraction, in more serious KG building cases
                # we'll need NLP models to better extract triplets.
                continue

            subj, pred, obj = map(str.strip, tokens)
            if not subj or not pred or not obj:
                # skip partial triplets
                continue

            # Strip double quotes and Capitalize triplets for disambiguation
            subj, pred, obj = (
                entity.strip('"').capitalize() for entity in [subj, pred, obj]
            )

            results.append((subj, pred, obj))
        return results

    def _build_index_from_nodes(
        self, nodes: Sequence[BaseNode], **build_kwargs: Any
    ) -> KG:
        """Build the index from nodes."""
        # do simple concatenation
        index_struct = self.index_struct_cls()
        nodes_with_progress = get_tqdm_iterable(
            nodes, self._show_progress, "Processing nodes"
        )
        for n in nodes_with_progress:
            triplets = self._extract_triplets(
                n.get_content(metadata_mode=MetadataMode.LLM)
            )
            logger.debug(f"> Extracted triplets: {triplets}")
            for triplet in triplets:
                subj, _, obj = triplet
                self.upsert_triplet(triplet)
                index_struct.add_node([subj, obj], n)

            if self.include_embeddings:
                triplet_texts = [str(t) for t in triplets]

                embed_outputs = self._embed_model.get_text_embedding_batch(
                    triplet_texts, show_progress=self._show_progress
                )
                for rel_text, rel_embed in zip(triplet_texts, embed_outputs):
                    index_struct.add_to_embedding_dict(rel_text, rel_embed)

        return index_struct

    def _insert(self, nodes: Sequence[BaseNode], **insert_kwargs: Any) -> None:
        """Insert a document."""
        for n in nodes:
            triplets = self._extract_triplets(
                n.get_content(metadata_mode=MetadataMode.LLM)
            )
            logger.debug(f"Extracted triplets: {triplets}")
            for triplet in triplets:
                subj, _, obj = triplet
                triplet_str = str(triplet)
                self.upsert_triplet(triplet)
                self._index_struct.add_node([subj, obj], n)
                if (
                    self.include_embeddings
                    and triplet_str not in self._index_struct.embedding_dict
                ):
                    rel_embedding = self._embed_model.get_text_embedding(triplet_str)
                    self._index_struct.add_to_embedding_dict(triplet_str, rel_embedding)

        # Update the storage context's index_store
        self._storage_context.index_store.add_index_struct(self._index_struct)

    def upsert_triplet(
        self, triplet: Tuple[str, str, str], include_embeddings: bool = False
    ) -> None:
        """
        Insert triplets and optionally embeddings.

        Used for manual insertion of KG triplets (in the form
        of (subject, relationship, object)).

        Args:
            triplet (tuple): Knowledge triplet
            embedding (Any, optional): Embedding option for the triplet. Defaults to None.

        """
        self._graph_store.upsert_triplet(*triplet)
        triplet_str = str(triplet)
        if include_embeddings:
            set_embedding = self._embed_model.get_text_embedding(triplet_str)
            self._index_struct.add_to_embedding_dict(str(triplet), set_embedding)
            self._storage_context.index_store.add_index_struct(self._index_struct)

    def add_node(self, keywords: List[str], node: BaseNode) -> None:
        """
        Add node.

        Used for manual insertion of nodes (keyed by keywords).

        Args:
            keywords (List[str]): Keywords to index the node.
            node (Node): Node to be indexed.

        """
        self._index_struct.add_node(keywords, node)
        self._docstore.add_documents([node], allow_update=True)

    def upsert_triplet_and_node(
        self,
        triplet: Tuple[str, str, str],
        node: BaseNode,
        include_embeddings: bool = False,
    ) -> None:
        """
        Upsert KG triplet and node.

        Calls both upsert_triplet and add_node.
        Behavior is idempotent; if Node already exists,
        only triplet will be added.

        Args:
            keywords (List[str]): Keywords to index the node.
            node (Node): Node to be indexed.
            include_embeddings (bool): Option to add embeddings for triplets. Defaults to False

        """
        subj, _, obj = triplet
        self.upsert_triplet(triplet)
        self.add_node([subj, obj], node)
        triplet_str = str(triplet)
        if include_embeddings:
            set_embedding = self._embed_model.get_text_embedding(triplet_str)
            self._index_struct.add_to_embedding_dict(str(triplet), set_embedding)
            self._storage_context.index_store.add_index_struct(self._index_struct)

    def _delete_node(self, node_id: str, **delete_kwargs: Any) -> None:
        """Delete a node."""
        raise NotImplementedError("Delete is not supported for KG index yet.")

    @property
    def ref_doc_info(self) -> Dict[str, RefDocInfo]:
        """Retrieve a dict mapping of ingested documents and their nodes+metadata."""
        node_doc_ids_sets = list(self._index_struct.table.values())
        node_doc_ids = list(set().union(*node_doc_ids_sets))
        nodes = self.docstore.get_nodes(node_doc_ids)

        all_ref_doc_info = {}
        for node in nodes:
            ref_node = node.source_node
            if not ref_node:
                continue

            ref_doc_info = self.docstore.get_ref_doc_info(ref_node.node_id)
            if not ref_doc_info:
                continue

            all_ref_doc_info[ref_node.node_id] = ref_doc_info
        return all_ref_doc_info

    def get_networkx_graph(self, limit: int = 100) -> Any:
        """
        Get networkx representation of the graph structure.

        Args:
            limit (int): Number of starting nodes to be included in the graph.

        NOTE: This function requires networkx to be installed.
        NOTE: This is a beta feature.

        """
        try:
            import networkx as nx
        except ImportError:
            raise ImportError(
                "Please install networkx to visualize the graph: `pip install networkx`"
            )

        g = nx.Graph()
        subjs = list(self.index_struct.table.keys())

        # add edges
        rel_map = self._graph_store.get_rel_map(subjs=subjs, depth=1, limit=limit)

        added_nodes = set()
        for keyword in rel_map:
            for path in rel_map[keyword]:
                subj = keyword
                for i in range(0, len(path), 2):
                    if i + 2 >= len(path):
                        break

                    if subj not in added_nodes:
                        g.add_node(subj)
                        added_nodes.add(subj)

                    rel = path[i + 1]
                    obj = path[i + 2]

                    g.add_edge(subj, obj, label=rel, title=rel)
                    subj = obj
        return g

    @property
    def query_context(self) -> Dict[str, Any]:
        return {GRAPH_STORE_KEY: self._graph_store}

ref_doc_info property #

ref_doc_info: Dict[str, RefDocInfo]

Retrieve a dict mapping of ingested documents and their nodes+metadata.

upsert_triplet #

upsert_triplet(triplet: Tuple[str, str, str], include_embeddings: bool = False) -> None

Insert triplets and optionally embeddings.

Used for manual insertion of KG triplets (in the form of (subject, relationship, object)).

Parameters:

Name Type Description Default
triplet tuple

Knowledge triplet

required
embedding Any

Embedding option for the triplet. Defaults to None.

required
Source code in llama_index/core/indices/knowledge_graph/base.py
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
def upsert_triplet(
    self, triplet: Tuple[str, str, str], include_embeddings: bool = False
) -> None:
    """
    Insert triplets and optionally embeddings.

    Used for manual insertion of KG triplets (in the form
    of (subject, relationship, object)).

    Args:
        triplet (tuple): Knowledge triplet
        embedding (Any, optional): Embedding option for the triplet. Defaults to None.

    """
    self._graph_store.upsert_triplet(*triplet)
    triplet_str = str(triplet)
    if include_embeddings:
        set_embedding = self._embed_model.get_text_embedding(triplet_str)
        self._index_struct.add_to_embedding_dict(str(triplet), set_embedding)
        self._storage_context.index_store.add_index_struct(self._index_struct)

add_node #

add_node(keywords: List[str], node: BaseNode) -> None

Add node.

Used for manual insertion of nodes (keyed by keywords).

Parameters:

Name Type Description Default
keywords List[str]

Keywords to index the node.

required
node Node

Node to be indexed.

required
Source code in llama_index/core/indices/knowledge_graph/base.py
277
278
279
280
281
282
283
284
285
286
287
288
289
def add_node(self, keywords: List[str], node: BaseNode) -> None:
    """
    Add node.

    Used for manual insertion of nodes (keyed by keywords).

    Args:
        keywords (List[str]): Keywords to index the node.
        node (Node): Node to be indexed.

    """
    self._index_struct.add_node(keywords, node)
    self._docstore.add_documents([node], allow_update=True)

upsert_triplet_and_node #

upsert_triplet_and_node(triplet: Tuple[str, str, str], node: BaseNode, include_embeddings: bool = False) -> None

Upsert KG triplet and node.

Calls both upsert_triplet and add_node. Behavior is idempotent; if Node already exists, only triplet will be added.

Parameters:

Name Type Description Default
keywords List[str]

Keywords to index the node.

required
node Node

Node to be indexed.

required
include_embeddings bool

Option to add embeddings for triplets. Defaults to False

False
Source code in llama_index/core/indices/knowledge_graph/base.py
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
def upsert_triplet_and_node(
    self,
    triplet: Tuple[str, str, str],
    node: BaseNode,
    include_embeddings: bool = False,
) -> None:
    """
    Upsert KG triplet and node.

    Calls both upsert_triplet and add_node.
    Behavior is idempotent; if Node already exists,
    only triplet will be added.

    Args:
        keywords (List[str]): Keywords to index the node.
        node (Node): Node to be indexed.
        include_embeddings (bool): Option to add embeddings for triplets. Defaults to False

    """
    subj, _, obj = triplet
    self.upsert_triplet(triplet)
    self.add_node([subj, obj], node)
    triplet_str = str(triplet)
    if include_embeddings:
        set_embedding = self._embed_model.get_text_embedding(triplet_str)
        self._index_struct.add_to_embedding_dict(str(triplet), set_embedding)
        self._storage_context.index_store.add_index_struct(self._index_struct)

get_networkx_graph #

get_networkx_graph(limit: int = 100) -> Any

Get networkx representation of the graph structure.

Parameters:

Name Type Description Default
limit int

Number of starting nodes to be included in the graph.

100

NOTE: This function requires networkx to be installed. NOTE: This is a beta feature.

Source code in llama_index/core/indices/knowledge_graph/base.py
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
def get_networkx_graph(self, limit: int = 100) -> Any:
    """
    Get networkx representation of the graph structure.

    Args:
        limit (int): Number of starting nodes to be included in the graph.

    NOTE: This function requires networkx to be installed.
    NOTE: This is a beta feature.

    """
    try:
        import networkx as nx
    except ImportError:
        raise ImportError(
            "Please install networkx to visualize the graph: `pip install networkx`"
        )

    g = nx.Graph()
    subjs = list(self.index_struct.table.keys())

    # add edges
    rel_map = self._graph_store.get_rel_map(subjs=subjs, depth=1, limit=limit)

    added_nodes = set()
    for keyword in rel_map:
        for path in rel_map[keyword]:
            subj = keyword
            for i in range(0, len(path), 2):
                if i + 2 >= len(path):
                    break

                if subj not in added_nodes:
                    g.add_node(subj)
                    added_nodes.add(subj)

                rel = path[i + 1]
                obj = path[i + 2]

                g.add_edge(subj, obj, label=rel, title=rel)
                subj = obj
    return g

SummaryIndex #

Bases: BaseIndex[IndexList]

Summary Index.

The summary index is a simple data structure where nodes are stored in a sequence. During index construction, the document texts are chunked up, converted to nodes, and stored in a list.

During query time, the summary index iterates through the nodes with some optional filter parameters, and synthesizes an answer from all the nodes.

Parameters:

Name Type Description Default
text_qa_template Optional[BasePromptTemplate]

A Question-Answer Prompt (see :ref:Prompt-Templates). NOTE: this is a deprecated field.

required
show_progress bool

Whether to show tqdm progress bars. Defaults to False.

False
Source code in llama_index/core/indices/list/base.py
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
class SummaryIndex(BaseIndex[IndexList]):
    """
    Summary Index.

    The summary index is a simple data structure where nodes are stored in
    a sequence. During index construction, the document texts are
    chunked up, converted to nodes, and stored in a list.

    During query time, the summary index iterates through the nodes
    with some optional filter parameters, and synthesizes an
    answer from all the nodes.

    Args:
        text_qa_template (Optional[BasePromptTemplate]): A Question-Answer Prompt
            (see :ref:`Prompt-Templates`).
            NOTE: this is a deprecated field.
        show_progress (bool): Whether to show tqdm progress bars. Defaults to False.

    """

    index_struct_cls = IndexList

    def __init__(
        self,
        nodes: Optional[Sequence[BaseNode]] = None,
        objects: Optional[Sequence[IndexNode]] = None,
        index_struct: Optional[IndexList] = None,
        show_progress: bool = False,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        super().__init__(
            nodes=nodes,
            index_struct=index_struct,
            show_progress=show_progress,
            objects=objects,
            **kwargs,
        )

    def as_retriever(
        self,
        retriever_mode: Union[str, ListRetrieverMode] = ListRetrieverMode.DEFAULT,
        llm: Optional[LLM] = None,
        embed_model: Optional[BaseEmbedding] = None,
        **kwargs: Any,
    ) -> BaseRetriever:
        from llama_index.core.indices.list.retrievers import (
            SummaryIndexEmbeddingRetriever,
            SummaryIndexLLMRetriever,
            SummaryIndexRetriever,
        )

        if retriever_mode == ListRetrieverMode.DEFAULT:
            return SummaryIndexRetriever(self, object_map=self._object_map, **kwargs)
        elif retriever_mode == ListRetrieverMode.EMBEDDING:
            embed_model = embed_model or Settings.embed_model
            return SummaryIndexEmbeddingRetriever(
                self, object_map=self._object_map, embed_model=embed_model, **kwargs
            )
        elif retriever_mode == ListRetrieverMode.LLM:
            llm = llm or Settings.llm
            return SummaryIndexLLMRetriever(
                self, object_map=self._object_map, llm=llm, **kwargs
            )
        else:
            raise ValueError(f"Unknown retriever mode: {retriever_mode}")

    def _build_index_from_nodes(
        self,
        nodes: Sequence[BaseNode],
        show_progress: bool = False,
        **build_kwargs: Any,
    ) -> IndexList:
        """
        Build the index from documents.

        Args:
            documents (List[BaseDocument]): A list of documents.

        Returns:
            IndexList: The created summary index.

        """
        index_struct = IndexList()
        nodes_with_progress = get_tqdm_iterable(
            nodes, show_progress, "Processing nodes"
        )
        for n in nodes_with_progress:
            index_struct.add_node(n)
        return index_struct

    def _insert(self, nodes: Sequence[BaseNode], **insert_kwargs: Any) -> None:
        """Insert a document."""
        for n in nodes:
            self._index_struct.add_node(n)

    def _delete_node(self, node_id: str, **delete_kwargs: Any) -> None:
        """Delete a node."""
        cur_node_ids = self._index_struct.nodes
        cur_nodes = self._docstore.get_nodes(cur_node_ids)
        nodes_to_keep = [n for n in cur_nodes if n.node_id != node_id]
        self._index_struct.nodes = [n.node_id for n in nodes_to_keep]

    @property
    def ref_doc_info(self) -> Dict[str, RefDocInfo]:
        """Retrieve a dict mapping of ingested documents and their nodes+metadata."""
        node_doc_ids = self._index_struct.nodes
        nodes = self.docstore.get_nodes(node_doc_ids)

        all_ref_doc_info = {}
        for node in nodes:
            ref_node = node.source_node
            if not ref_node:
                continue

            ref_doc_info = self.docstore.get_ref_doc_info(ref_node.node_id)
            if not ref_doc_info:
                continue

            all_ref_doc_info[ref_node.node_id] = ref_doc_info
        return all_ref_doc_info

ref_doc_info property #

ref_doc_info: Dict[str, RefDocInfo]

Retrieve a dict mapping of ingested documents and their nodes+metadata.

MultiModalVectorStoreIndex #

Bases: VectorStoreIndex

Multi-Modal Vector Store Index.

Parameters:

Name Type Description Default
use_async bool

Whether to use asynchronous calls. Defaults to False.

False
show_progress bool

Whether to show tqdm progress bars. Defaults to False.

False
store_nodes_override bool

set to True to always store Node objects in index store and document store even if vector store keeps text. Defaults to False

False
Source code in llama_index/core/indices/multi_modal/base.py
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
class MultiModalVectorStoreIndex(VectorStoreIndex):
    """
    Multi-Modal Vector Store Index.

    Args:
        use_async (bool): Whether to use asynchronous calls. Defaults to False.
        show_progress (bool): Whether to show tqdm progress bars. Defaults to False.
        store_nodes_override (bool): set to True to always store Node objects in index
            store and document store even if vector store keeps text. Defaults to False

    """

    image_namespace = "image"
    index_struct_cls = MultiModelIndexDict

    def __init__(
        self,
        nodes: Optional[Sequence[BaseNode]] = None,
        index_struct: Optional[MultiModelIndexDict] = None,
        embed_model: Optional[BaseEmbedding] = None,
        storage_context: Optional[StorageContext] = None,
        use_async: bool = False,
        store_nodes_override: bool = False,
        show_progress: bool = False,
        # Image-related kwargs
        # image_vector_store going to be deprecated. image_store can be passed from storage_context
        # keep image_vector_store here for backward compatibility
        image_vector_store: Optional[BasePydanticVectorStore] = None,
        image_embed_model: EmbedType = "clip:ViT-B/32",
        is_image_to_text: bool = False,
        # is_image_vector_store_empty is used to indicate whether image_vector_store is empty
        # those flags are used for cases when only one vector store is used
        is_image_vector_store_empty: bool = False,
        is_text_vector_store_empty: bool = False,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        image_embed_model = resolve_embed_model(
            image_embed_model, callback_manager=kwargs.get("callback_manager")
        )
        assert isinstance(image_embed_model, MultiModalEmbedding)
        self._image_embed_model = image_embed_model
        self._is_image_to_text = is_image_to_text
        self._is_image_vector_store_empty = is_image_vector_store_empty
        self._is_text_vector_store_empty = is_text_vector_store_empty
        storage_context = storage_context or StorageContext.from_defaults()

        if image_vector_store is not None:
            if self.image_namespace not in storage_context.vector_stores:
                storage_context.add_vector_store(
                    image_vector_store, self.image_namespace
                )
            else:
                # overwrite image_store from storage_context
                storage_context.vector_stores[self.image_namespace] = image_vector_store

        if self.image_namespace not in storage_context.vector_stores:
            storage_context.add_vector_store(SimpleVectorStore(), self.image_namespace)

        self._image_vector_store = storage_context.vector_stores[self.image_namespace]

        super().__init__(
            nodes=nodes,
            index_struct=index_struct,
            embed_model=embed_model,
            storage_context=storage_context,
            show_progress=show_progress,
            use_async=use_async,
            store_nodes_override=store_nodes_override,
            **kwargs,
        )

    @property
    def image_vector_store(self) -> BasePydanticVectorStore:
        return self._image_vector_store

    @property
    def image_embed_model(self) -> MultiModalEmbedding:
        return self._image_embed_model

    @property
    def is_image_vector_store_empty(self) -> bool:
        return self._is_image_vector_store_empty

    @property
    def is_text_vector_store_empty(self) -> bool:
        return self._is_text_vector_store_empty

    def as_retriever(self, **kwargs: Any) -> MultiModalVectorIndexRetriever:
        return MultiModalVectorIndexRetriever(
            self,
            node_ids=list(self.index_struct.nodes_dict.values()),
            **kwargs,
        )

    def as_query_engine(
        self,
        llm: Optional[LLMType] = None,
        **kwargs: Any,
    ) -> SimpleMultiModalQueryEngine:
        retriever = cast(MultiModalVectorIndexRetriever, self.as_retriever(**kwargs))

        llm = llm or Settings.llm
        assert isinstance(llm, (BaseLLM, MultiModalLLM))
        class_name = llm.class_name()
        if "multi" not in class_name:
            logger.warning(
                f"Warning: {class_name} does not appear to be a multi-modal LLM. This may not work as expected."
            )

        return SimpleMultiModalQueryEngine(
            retriever,
            multi_modal_llm=llm,  # type: ignore
            **kwargs,
        )

    @classmethod
    def from_vector_store(
        cls,
        vector_store: BasePydanticVectorStore,
        embed_model: Optional[EmbedType] = None,
        # Image-related kwargs
        image_vector_store: Optional[BasePydanticVectorStore] = None,
        image_embed_model: EmbedType = "clip",
        **kwargs: Any,
    ) -> "MultiModalVectorStoreIndex":
        if not vector_store.stores_text:
            raise ValueError(
                "Cannot initialize from a vector store that does not store text."
            )

        storage_context = StorageContext.from_defaults(vector_store=vector_store)
        return cls(
            nodes=[],
            storage_context=storage_context,
            image_vector_store=image_vector_store,
            image_embed_model=image_embed_model,
            embed_model=(
                resolve_embed_model(
                    embed_model, callback_manager=kwargs.get("callback_manager")
                )
                if embed_model
                else Settings.embed_model
            ),
            **kwargs,
        )

    def _get_node_with_embedding(
        self,
        nodes: Sequence[BaseNode],
        show_progress: bool = False,
        is_image: bool = False,
    ) -> List[BaseNode]:
        """
        Get tuples of id, node, and embedding.

        Allows us to store these nodes in a vector store.
        Embeddings are called in batches.

        """
        id_to_text_embed_map = None

        if is_image:
            assert all(isinstance(node, ImageNode) for node in nodes)
            id_to_embed_map = embed_image_nodes(
                nodes,  # type: ignore
                embed_model=self._image_embed_model,
                show_progress=show_progress,
            )

            # text field is populate, so embed them
            if self._is_image_to_text:
                id_to_text_embed_map = embed_nodes(
                    nodes,
                    embed_model=self._embed_model,
                    show_progress=show_progress,
                )
                # TODO: refactor this change of image embed model to same as text
                self._image_embed_model = self._embed_model  # type: ignore

        else:
            id_to_embed_map = embed_nodes(
                nodes,
                embed_model=self._embed_model,
                show_progress=show_progress,
            )

        results = []
        for node in nodes:
            embedding = id_to_embed_map[node.node_id]
            result = node.model_copy()
            result.embedding = embedding
            if is_image and id_to_text_embed_map:
                assert isinstance(result, ImageNode)
                text_embedding = id_to_text_embed_map[node.node_id]
                result.text_embedding = text_embedding
                result.embedding = (
                    text_embedding  # TODO: re-factor to make use of both embeddings
                )
            results.append(result)
        return results

    async def _aget_node_with_embedding(
        self,
        nodes: Sequence[BaseNode],
        show_progress: bool = False,
        is_image: bool = False,
    ) -> List[BaseNode]:
        """
        Asynchronously get tuples of id, node, and embedding.

        Allows us to store these nodes in a vector store.
        Embeddings are called in batches.

        """
        id_to_text_embed_map = None

        if is_image:
            assert all(isinstance(node, ImageNode) for node in nodes)
            id_to_embed_map = await async_embed_image_nodes(
                nodes,  # type: ignore
                embed_model=self._image_embed_model,
                show_progress=show_progress,
            )

            if self._is_image_to_text:
                id_to_text_embed_map = await async_embed_nodes(
                    nodes,
                    embed_model=self._embed_model,
                    show_progress=show_progress,
                )
                # TODO: refactor this change of image embed model to same as text
                self._image_embed_model = self._embed_model  # type: ignore

        else:
            id_to_embed_map = await async_embed_nodes(
                nodes,
                embed_model=self._embed_model,
                show_progress=show_progress,
            )

        results = []
        for node in nodes:
            embedding = id_to_embed_map[node.node_id]
            result = node.model_copy()
            result.embedding = embedding
            if is_image and id_to_text_embed_map:
                assert isinstance(result, ImageNode)
                text_embedding = id_to_text_embed_map[node.node_id]
                result.text_embedding = text_embedding
                result.embedding = (
                    text_embedding  # TODO: re-factor to make use of both embeddings
                )
            results.append(result)
        return results

    async def _async_add_nodes_to_index(
        self,
        index_struct: IndexDict,
        nodes: Sequence[BaseNode],
        show_progress: bool = False,
        **insert_kwargs: Any,
    ) -> None:
        """Asynchronously add nodes to index."""
        if not nodes:
            return

        image_nodes: List[ImageNode] = []
        text_nodes: List[BaseNode] = []
        new_text_ids: List[str] = []
        new_img_ids: List[str] = []

        for node in nodes:
            if isinstance(node, ImageNode):
                image_nodes.append(node)
            if isinstance(node, TextNode) and node.text:
                text_nodes.append(node)

        if len(text_nodes) > 0:
            # embed all nodes as text - include image nodes that have text attached
            text_nodes = await self._aget_node_with_embedding(
                text_nodes, show_progress, is_image=False
            )
            new_text_ids = await self.storage_context.vector_stores[
                DEFAULT_VECTOR_STORE
            ].async_add(text_nodes, **insert_kwargs)
        else:
            self._is_text_vector_store_empty = True

        if len(image_nodes) > 0:
            # embed image nodes as images directly
            image_nodes = await self._aget_node_with_embedding(  # type: ignore
                image_nodes,
                show_progress,
                is_image=True,
            )
            new_img_ids = await self.storage_context.vector_stores[
                self.image_namespace
            ].async_add(image_nodes, **insert_kwargs)
        else:
            self._is_image_vector_store_empty = True

        # if the vector store doesn't store text, we need to add the nodes to the
        # index struct and document store
        all_nodes = text_nodes + image_nodes
        all_new_ids = new_text_ids + new_img_ids
        if not self._vector_store.stores_text or self._store_nodes_override:
            for node, new_id in zip(all_nodes, all_new_ids):
                # NOTE: remove embedding from node to avoid duplication
                node_without_embedding = node.model_copy()
                node_without_embedding.embedding = None

                index_struct.add_node(node_without_embedding, text_id=new_id)
                self._docstore.add_documents(
                    [node_without_embedding], allow_update=True
                )

    def _add_nodes_to_index(
        self,
        index_struct: IndexDict,
        nodes: Sequence[BaseNode],
        show_progress: bool = False,
        **insert_kwargs: Any,
    ) -> None:
        """Add document to index."""
        if not nodes:
            return

        image_nodes: List[ImageNode] = []
        text_nodes: List[TextNode] = []
        new_text_ids: List[str] = []
        new_img_ids: List[str] = []

        for node in nodes:
            if isinstance(node, ImageNode):
                image_nodes.append(node)
            if isinstance(node, TextNode) and node.text:
                text_nodes.append(node)

        if len(text_nodes) > 0:
            # embed all nodes as text - include image nodes that have text attached
            text_nodes = self._get_node_with_embedding(  # type: ignore
                text_nodes, show_progress, is_image=False
            )
            new_text_ids = self.storage_context.vector_stores[DEFAULT_VECTOR_STORE].add(
                text_nodes, **insert_kwargs
            )
        else:
            self._is_text_vector_store_empty = True

        if len(image_nodes) > 0:
            # embed image nodes as images directly
            # check if we should use text embedding for images instead of default
            image_nodes = self._get_node_with_embedding(  # type: ignore
                image_nodes,
                show_progress,
                is_image=True,
            )
            new_img_ids = self.storage_context.vector_stores[self.image_namespace].add(
                image_nodes, **insert_kwargs
            )
        else:
            self._is_image_vector_store_empty = True

        # if the vector store doesn't store text, we need to add the nodes to the
        # index struct and document store
        all_nodes = text_nodes + image_nodes
        all_new_ids = new_text_ids + new_img_ids
        if not self._vector_store.stores_text or self._store_nodes_override:
            for node, new_id in zip(all_nodes, all_new_ids):
                # NOTE: remove embedding from node to avoid duplication
                node_without_embedding = node.model_copy()
                node_without_embedding.embedding = None

                index_struct.add_node(node_without_embedding, text_id=new_id)
                self._docstore.add_documents(
                    [node_without_embedding], allow_update=True
                )

    def delete_ref_doc(
        self, ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any
    ) -> None:
        """Delete a document and it's nodes by using ref_doc_id."""
        # delete from all vector stores

        for vector_store in self._storage_context.vector_stores.values():
            vector_store.delete(ref_doc_id)

            if self._store_nodes_override or self._vector_store.stores_text:
                ref_doc_info = self._docstore.get_ref_doc_info(ref_doc_id)
                if ref_doc_info is not None:
                    for node_id in ref_doc_info.node_ids:
                        self._index_struct.delete(node_id)
                        self._vector_store.delete(node_id)

        if delete_from_docstore:
            self._docstore.delete_ref_doc(ref_doc_id, raise_error=False)

        self._storage_context.index_store.add_index_struct(self._index_struct)

delete_ref_doc #

delete_ref_doc(ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any) -> None

Delete a document and it's nodes by using ref_doc_id.

Source code in llama_index/core/indices/multi_modal/base.py
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
def delete_ref_doc(
    self, ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any
) -> None:
    """Delete a document and it's nodes by using ref_doc_id."""
    # delete from all vector stores

    for vector_store in self._storage_context.vector_stores.values():
        vector_store.delete(ref_doc_id)

        if self._store_nodes_override or self._vector_store.stores_text:
            ref_doc_info = self._docstore.get_ref_doc_info(ref_doc_id)
            if ref_doc_info is not None:
                for node_id in ref_doc_info.node_ids:
                    self._index_struct.delete(node_id)
                    self._vector_store.delete(node_id)

    if delete_from_docstore:
        self._docstore.delete_ref_doc(ref_doc_id, raise_error=False)

    self._storage_context.index_store.add_index_struct(self._index_struct)

SQLStructStoreIndex #

Bases: BaseStructStoreIndex[SQLStructTable]

SQL Struct Store Index.

The SQLStructStoreIndex is an index that uses a SQL database under the hood. During index construction, the data can be inferred from unstructured documents given a schema extract prompt, or it can be pre-loaded in the database.

During query time, the user can either specify a raw SQL query or a natural language query to retrieve their data.

NOTE: this is deprecated.

Parameters:

Name Type Description Default
documents Optional[Sequence[DOCUMENTS_INPUT]]

Documents to index. NOTE: in the SQL index, this is an optional field.

required
sql_database Optional[SQLDatabase]

SQL database to use, including table names to specify. See :ref:Ref-Struct-Store for more details.

None
table_name Optional[str]

Name of the table to use for extracting data. Either table_name or table must be specified.

None
table Optional[Table]

SQLAlchemy Table object to use. Specifying the Table object explicitly, instead of the table name, allows you to pass in a view. Either table_name or table must be specified.

None
sql_context_container Optional[SQLContextContainer]

SQL context container. an be generated from a SQLContextContainerBuilder. See :ref:Ref-Struct-Store for more details.

None
Source code in llama_index/core/indices/struct_store/sql.py
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
class SQLStructStoreIndex(BaseStructStoreIndex[SQLStructTable]):
    """
    SQL Struct Store Index.

    The SQLStructStoreIndex is an index that uses a SQL database
    under the hood. During index construction, the data can be inferred
    from unstructured documents given a schema extract prompt,
    or it can be pre-loaded in the database.

    During query time, the user can either specify a raw SQL query
    or a natural language query to retrieve their data.

    NOTE: this is deprecated.

    Args:
        documents (Optional[Sequence[DOCUMENTS_INPUT]]): Documents to index.
            NOTE: in the SQL index, this is an optional field.
        sql_database (Optional[SQLDatabase]): SQL database to use,
            including table names to specify.
            See :ref:`Ref-Struct-Store` for more details.
        table_name (Optional[str]): Name of the table to use
            for extracting data.
            Either table_name or table must be specified.
        table (Optional[Table]): SQLAlchemy Table object to use.
            Specifying the Table object explicitly, instead of
            the table name, allows you to pass in a view.
            Either table_name or table must be specified.
        sql_context_container (Optional[SQLContextContainer]): SQL context container.
            an be generated from a SQLContextContainerBuilder.
            See :ref:`Ref-Struct-Store` for more details.

    """

    index_struct_cls = SQLStructTable

    def __init__(
        self,
        nodes: Optional[Sequence[BaseNode]] = None,
        index_struct: Optional[SQLStructTable] = None,
        sql_database: Optional[SQLDatabase] = None,
        table_name: Optional[str] = None,
        table: Optional[Table] = None,
        ref_doc_id_column: Optional[str] = None,
        sql_context_container: Optional[SQLContextContainer] = None,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        if sql_database is None:
            raise ValueError("sql_database must be specified")
        self.sql_database = sql_database
        # needed here for data extractor
        self._ref_doc_id_column = ref_doc_id_column
        self._table_name = table_name
        self._table = table

        # if documents aren't specified, pass in a blank []
        if index_struct is None:
            nodes = nodes or []

        super().__init__(
            nodes=nodes,
            index_struct=index_struct,
            **kwargs,
        )

        # TODO: index_struct context_dict is deprecated,
        # we're migrating storage of information to here.
        if sql_context_container is None:
            container_builder = SQLContextContainerBuilder(sql_database)
            sql_context_container = container_builder.build_context_container()
        self.sql_context_container = sql_context_container

    @property
    def ref_doc_id_column(self) -> Optional[str]:
        return self._ref_doc_id_column

    def _build_index_from_nodes(
        self, nodes: Sequence[BaseNode], **build_kwargs: Any
    ) -> SQLStructTable:
        """Build index from nodes."""
        index_struct = self.index_struct_cls()
        if len(nodes) == 0:
            return index_struct
        else:
            data_extractor = SQLStructDatapointExtractor(
                Settings.llm,
                self.schema_extract_prompt,
                self.output_parser,
                self.sql_database,
                table_name=self._table_name,
                table=self._table,
                ref_doc_id_column=self._ref_doc_id_column,
            )
            # group nodes by ids
            source_to_node = defaultdict(list)
            for node in nodes:
                source_to_node[node.ref_doc_id].append(node)

            for node_set in source_to_node.values():
                data_extractor.insert_datapoint_from_nodes(node_set)
        return index_struct

    def _insert(self, nodes: Sequence[BaseNode], **insert_kwargs: Any) -> None:
        """Insert a document."""
        data_extractor = SQLStructDatapointExtractor(
            Settings.llm,
            self.schema_extract_prompt,
            self.output_parser,
            self.sql_database,
            table_name=self._table_name,
            table=self._table,
            ref_doc_id_column=self._ref_doc_id_column,
        )
        data_extractor.insert_datapoint_from_nodes(nodes)

    def as_retriever(self, **kwargs: Any) -> BaseRetriever:
        raise NotImplementedError("Not supported")

    def as_query_engine(
        self,
        llm: Optional[LLMType] = None,
        query_mode: Union[str, SQLQueryMode] = SQLQueryMode.NL,
        **kwargs: Any,
    ) -> BaseQueryEngine:
        # NOTE: lazy import
        from llama_index.core.indices.struct_store.sql_query import (
            NLStructStoreQueryEngine,
            SQLStructStoreQueryEngine,
        )

        if query_mode == SQLQueryMode.NL:
            return NLStructStoreQueryEngine(self, **kwargs)
        elif query_mode == SQLQueryMode.SQL:
            return SQLStructStoreQueryEngine(self, **kwargs)
        else:
            raise ValueError(f"Unknown query mode: {query_mode}")

TreeIndex #

Bases: BaseIndex[IndexGraph]

Tree Index.

The tree index is a tree-structured index, where each node is a summary of the children nodes. During index construction, the tree is constructed in a bottoms-up fashion until we end up with a set of root_nodes.

There are a few different options during query time (see :ref:Ref-Query). The main option is to traverse down the tree from the root nodes. A secondary answer is to directly synthesize the answer from the root nodes.

Parameters:

Name Type Description Default
summary_template Optional[BasePromptTemplate]

A Summarization Prompt (see :ref:Prompt-Templates).

None
insert_prompt Optional[BasePromptTemplate]

An Tree Insertion Prompt (see :ref:Prompt-Templates).

None
num_children int

The number of children each node should have.

10
build_tree bool

Whether to build the tree during index construction.

True
show_progress bool

Whether to show progress bars. Defaults to False.

False
Source code in llama_index/core/indices/tree/base.py
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
class TreeIndex(BaseIndex[IndexGraph]):
    """
    Tree Index.

    The tree index is a tree-structured index, where each node is a summary of
    the children nodes. During index construction, the tree is constructed
    in a bottoms-up fashion until we end up with a set of root_nodes.

    There are a few different options during query time (see :ref:`Ref-Query`).
    The main option is to traverse down the tree from the root nodes.
    A secondary answer is to directly synthesize the answer from the root nodes.

    Args:
        summary_template (Optional[BasePromptTemplate]): A Summarization Prompt
            (see :ref:`Prompt-Templates`).
        insert_prompt (Optional[BasePromptTemplate]): An Tree Insertion Prompt
            (see :ref:`Prompt-Templates`).
        num_children (int): The number of children each node should have.
        build_tree (bool): Whether to build the tree during index construction.
        show_progress (bool): Whether to show progress bars. Defaults to False.

    """

    index_struct_cls = IndexGraph

    def __init__(
        self,
        nodes: Optional[Sequence[BaseNode]] = None,
        objects: Optional[Sequence[IndexNode]] = None,
        index_struct: Optional[IndexGraph] = None,
        llm: Optional[LLM] = None,
        summary_template: Optional[BasePromptTemplate] = None,
        insert_prompt: Optional[BasePromptTemplate] = None,
        num_children: int = 10,
        build_tree: bool = True,
        use_async: bool = False,
        show_progress: bool = False,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        # need to set parameters before building index in base class.
        self.num_children = num_children
        self.summary_template = summary_template or DEFAULT_SUMMARY_PROMPT
        self.insert_prompt: BasePromptTemplate = insert_prompt or DEFAULT_INSERT_PROMPT
        self.build_tree = build_tree
        self._use_async = use_async
        self._llm = llm or Settings.llm
        super().__init__(
            nodes=nodes,
            index_struct=index_struct,
            show_progress=show_progress,
            objects=objects,
            **kwargs,
        )

    def as_retriever(
        self,
        retriever_mode: Union[str, TreeRetrieverMode] = TreeRetrieverMode.SELECT_LEAF,
        embed_model: Optional[BaseEmbedding] = None,
        **kwargs: Any,
    ) -> BaseRetriever:
        # NOTE: lazy import
        from llama_index.core.indices.tree.all_leaf_retriever import (
            TreeAllLeafRetriever,
        )
        from llama_index.core.indices.tree.select_leaf_embedding_retriever import (
            TreeSelectLeafEmbeddingRetriever,
        )
        from llama_index.core.indices.tree.select_leaf_retriever import (
            TreeSelectLeafRetriever,
        )
        from llama_index.core.indices.tree.tree_root_retriever import (
            TreeRootRetriever,
        )

        self._validate_build_tree_required(TreeRetrieverMode(retriever_mode))

        if retriever_mode == TreeRetrieverMode.SELECT_LEAF:
            return TreeSelectLeafRetriever(self, object_map=self._object_map, **kwargs)
        elif retriever_mode == TreeRetrieverMode.SELECT_LEAF_EMBEDDING:
            embed_model = embed_model or Settings.embed_model
            return TreeSelectLeafEmbeddingRetriever(
                self, embed_model=embed_model, object_map=self._object_map, **kwargs
            )
        elif retriever_mode == TreeRetrieverMode.ROOT:
            return TreeRootRetriever(self, object_map=self._object_map, **kwargs)
        elif retriever_mode == TreeRetrieverMode.ALL_LEAF:
            return TreeAllLeafRetriever(self, object_map=self._object_map, **kwargs)
        else:
            raise ValueError(f"Unknown retriever mode: {retriever_mode}")

    def _validate_build_tree_required(self, retriever_mode: TreeRetrieverMode) -> None:
        """Check if index supports modes that require trees."""
        if retriever_mode in REQUIRE_TREE_MODES and not self.build_tree:
            raise ValueError(
                "Index was constructed without building trees, "
                f"but retriever mode {retriever_mode} requires trees."
            )

    def _build_index_from_nodes(
        self, nodes: Sequence[BaseNode], **build_kwargs: Any
    ) -> IndexGraph:
        """Build the index from nodes."""
        index_builder = GPTTreeIndexBuilder(
            self.num_children,
            self.summary_template,
            llm=self._llm,
            use_async=self._use_async,
            show_progress=self._show_progress,
            docstore=self._docstore,
        )
        return index_builder.build_from_nodes(nodes, build_tree=self.build_tree)

    def _insert(self, nodes: Sequence[BaseNode], **insert_kwargs: Any) -> None:
        """Insert a document."""
        # TODO: allow to customize insert prompt
        inserter = TreeIndexInserter(
            self.index_struct,
            llm=self._llm,
            num_children=self.num_children,
            insert_prompt=self.insert_prompt,
            summary_prompt=self.summary_template,
            docstore=self._docstore,
        )
        inserter.insert(nodes)

    def _delete_node(self, node_id: str, **delete_kwargs: Any) -> None:
        """Delete a node."""
        raise NotImplementedError("Delete not implemented for tree index.")

    @property
    def ref_doc_info(self) -> Dict[str, RefDocInfo]:
        """Retrieve a dict mapping of ingested documents and their nodes+metadata."""
        node_doc_ids = list(self.index_struct.all_nodes.values())
        nodes = self.docstore.get_nodes(node_doc_ids)

        all_ref_doc_info = {}
        for node in nodes:
            ref_node = node.source_node
            if not ref_node:
                continue

            ref_doc_info = self.docstore.get_ref_doc_info(ref_node.node_id)
            if not ref_doc_info:
                continue

            all_ref_doc_info[ref_node.node_id] = ref_doc_info
        return all_ref_doc_info

ref_doc_info property #

ref_doc_info: Dict[str, RefDocInfo]

Retrieve a dict mapping of ingested documents and their nodes+metadata.

VectorStoreIndex #

Bases: BaseIndex[IndexDict]

Vector Store Index.

Parameters:

Name Type Description Default
use_async bool

Whether to use asynchronous calls. Defaults to False.

False
show_progress bool

Whether to show tqdm progress bars. Defaults to False.

False
store_nodes_override bool

set to True to always store Node objects in index store and document store even if vector store keeps text. Defaults to False

False
Source code in llama_index/core/indices/vector_store/base.py
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
class VectorStoreIndex(BaseIndex[IndexDict]):
    """
    Vector Store Index.

    Args:
        use_async (bool): Whether to use asynchronous calls. Defaults to False.
        show_progress (bool): Whether to show tqdm progress bars. Defaults to False.
        store_nodes_override (bool): set to True to always store Node objects in index
            store and document store even if vector store keeps text. Defaults to False

    """

    index_struct_cls = IndexDict

    def __init__(
        self,
        nodes: Optional[Sequence[BaseNode]] = None,
        # vector store index params
        use_async: bool = False,
        store_nodes_override: bool = False,
        embed_model: Optional[EmbedType] = None,
        insert_batch_size: int = 2048,
        # parent class params
        objects: Optional[Sequence[IndexNode]] = None,
        index_struct: Optional[IndexDict] = None,
        storage_context: Optional[StorageContext] = None,
        callback_manager: Optional[CallbackManager] = None,
        transformations: Optional[List[TransformComponent]] = None,
        show_progress: bool = False,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        self._use_async = use_async
        self._store_nodes_override = store_nodes_override
        self._embed_model = resolve_embed_model(
            embed_model or Settings.embed_model, callback_manager=callback_manager
        )

        self._insert_batch_size = insert_batch_size
        super().__init__(
            nodes=nodes,
            index_struct=index_struct,
            storage_context=storage_context,
            show_progress=show_progress,
            objects=objects,
            callback_manager=callback_manager,
            transformations=transformations,
            **kwargs,
        )

    @classmethod
    def from_vector_store(
        cls,
        vector_store: BasePydanticVectorStore,
        embed_model: Optional[EmbedType] = None,
        **kwargs: Any,
    ) -> "VectorStoreIndex":
        if not vector_store.stores_text:
            raise ValueError(
                "Cannot initialize from a vector store that does not store text."
            )

        kwargs.pop("storage_context", None)
        storage_context = StorageContext.from_defaults(vector_store=vector_store)

        return cls(
            nodes=[],
            embed_model=embed_model,
            storage_context=storage_context,
            **kwargs,
        )

    @property
    def vector_store(self) -> BasePydanticVectorStore:
        return self._vector_store

    def as_retriever(self, **kwargs: Any) -> BaseRetriever:
        # NOTE: lazy import
        from llama_index.core.indices.vector_store.retrievers import (
            VectorIndexRetriever,
        )

        return VectorIndexRetriever(
            self,
            node_ids=list(self.index_struct.nodes_dict.values()),
            callback_manager=self._callback_manager,
            object_map=self._object_map,
            **kwargs,
        )

    def _get_node_with_embedding(
        self,
        nodes: Sequence[BaseNode],
        show_progress: bool = False,
    ) -> List[BaseNode]:
        """
        Get tuples of id, node, and embedding.

        Allows us to store these nodes in a vector store.
        Embeddings are called in batches.

        """
        id_to_embed_map = embed_nodes(
            nodes, self._embed_model, show_progress=show_progress
        )

        results = []
        for node in nodes:
            embedding = id_to_embed_map[node.node_id]
            result = node.model_copy()
            result.embedding = embedding
            results.append(result)
        return results

    async def _aget_node_with_embedding(
        self,
        nodes: Sequence[BaseNode],
        show_progress: bool = False,
    ) -> List[BaseNode]:
        """
        Asynchronously get tuples of id, node, and embedding.

        Allows us to store these nodes in a vector store.
        Embeddings are called in batches.

        """
        id_to_embed_map = await async_embed_nodes(
            nodes=nodes,
            embed_model=self._embed_model,
            show_progress=show_progress,
        )

        results = []
        for node in nodes:
            embedding = id_to_embed_map[node.node_id]
            result = node.model_copy()
            result.embedding = embedding
            results.append(result)
        return results

    async def _async_add_nodes_to_index(
        self,
        index_struct: IndexDict,
        nodes: Sequence[BaseNode],
        show_progress: bool = False,
        **insert_kwargs: Any,
    ) -> None:
        """Asynchronously add nodes to index."""
        if not nodes:
            return

        for nodes_batch in iter_batch(nodes, self._insert_batch_size):
            nodes_batch = await self._aget_node_with_embedding(
                nodes_batch, show_progress
            )
            new_ids = await self._vector_store.async_add(nodes_batch, **insert_kwargs)

            # if the vector store doesn't store text, we need to add the nodes to the
            # index struct and document store
            if not self._vector_store.stores_text or self._store_nodes_override:
                for node, new_id in zip(nodes_batch, new_ids):
                    # NOTE: remove embedding from node to avoid duplication
                    node_without_embedding = node.model_copy()
                    node_without_embedding.embedding = None

                    index_struct.add_node(node_without_embedding, text_id=new_id)
                    await self._docstore.async_add_documents(
                        [node_without_embedding], allow_update=True
                    )
            else:
                # NOTE: if the vector store keeps text,
                # we only need to add image and index nodes
                for node, new_id in zip(nodes_batch, new_ids):
                    if isinstance(node, (ImageNode, IndexNode)):
                        # NOTE: remove embedding from node to avoid duplication
                        node_without_embedding = node.model_copy()
                        node_without_embedding.embedding = None

                        index_struct.add_node(node_without_embedding, text_id=new_id)
                        await self._docstore.async_add_documents(
                            [node_without_embedding], allow_update=True
                        )

    def _add_nodes_to_index(
        self,
        index_struct: IndexDict,
        nodes: Sequence[BaseNode],
        show_progress: bool = False,
        **insert_kwargs: Any,
    ) -> None:
        """Add document to index."""
        if not nodes:
            return

        for nodes_batch in iter_batch(nodes, self._insert_batch_size):
            nodes_batch = self._get_node_with_embedding(nodes_batch, show_progress)
            new_ids = self._vector_store.add(nodes_batch, **insert_kwargs)

            if not self._vector_store.stores_text or self._store_nodes_override:
                # NOTE: if the vector store doesn't store text,
                # we need to add the nodes to the index struct and document store
                for node, new_id in zip(nodes_batch, new_ids):
                    # NOTE: remove embedding from node to avoid duplication
                    node_without_embedding = node.model_copy()
                    node_without_embedding.embedding = None

                    index_struct.add_node(node_without_embedding, text_id=new_id)
                    self._docstore.add_documents(
                        [node_without_embedding], allow_update=True
                    )
            else:
                # NOTE: if the vector store keeps text,
                # we only need to add image and index nodes
                for node, new_id in zip(nodes_batch, new_ids):
                    if isinstance(node, (ImageNode, IndexNode)):
                        # NOTE: remove embedding from node to avoid duplication
                        node_without_embedding = node.model_copy()
                        node_without_embedding.embedding = None

                        index_struct.add_node(node_without_embedding, text_id=new_id)
                        self._docstore.add_documents(
                            [node_without_embedding], allow_update=True
                        )

    def _build_index_from_nodes(
        self,
        nodes: Sequence[BaseNode],
        **insert_kwargs: Any,
    ) -> IndexDict:
        """Build index from nodes."""
        index_struct = self.index_struct_cls()
        if self._use_async:
            tasks = [
                self._async_add_nodes_to_index(
                    index_struct,
                    nodes,
                    show_progress=self._show_progress,
                    **insert_kwargs,
                )
            ]
            run_async_tasks(tasks)
        else:
            self._add_nodes_to_index(
                index_struct,
                nodes,
                show_progress=self._show_progress,
                **insert_kwargs,
            )
        return index_struct

    def build_index_from_nodes(
        self,
        nodes: Sequence[BaseNode],
        **insert_kwargs: Any,
    ) -> IndexDict:
        """
        Build the index from nodes.

        NOTE: Overrides BaseIndex.build_index_from_nodes.
            VectorStoreIndex only stores nodes in document store
            if vector store does not store text
        """
        # Filter out the nodes that don't have content
        content_nodes = [
            node
            for node in nodes
            if node.get_content(metadata_mode=MetadataMode.EMBED) != ""
        ]

        # Report if some nodes are missing content
        if len(content_nodes) != len(nodes):
            print("Some nodes are missing content, skipping them...")

        return self._build_index_from_nodes(content_nodes, **insert_kwargs)

    def _insert(self, nodes: Sequence[BaseNode], **insert_kwargs: Any) -> None:
        """Insert a document."""
        self._add_nodes_to_index(self._index_struct, nodes, **insert_kwargs)

    def _validate_serializable(self, nodes: Sequence[BaseNode]) -> None:
        """Validate that the nodes are serializable."""
        for node in nodes:
            if isinstance(node, IndexNode):
                try:
                    node.dict()
                except ValueError:
                    self._object_map[node.index_id] = node.obj
                    node.obj = None

    async def ainsert_nodes(
        self, nodes: Sequence[BaseNode], **insert_kwargs: Any
    ) -> None:
        """
        Insert nodes.

        NOTE: overrides BaseIndex.ainsert_nodes.
            VectorStoreIndex only stores nodes in document store
            if vector store does not store text
        """
        self._validate_serializable(nodes)

        with self._callback_manager.as_trace("insert_nodes"):
            await self._async_add_nodes_to_index(
                self._index_struct, nodes, **insert_kwargs
            )
            self._storage_context.index_store.add_index_struct(self._index_struct)

    def insert_nodes(self, nodes: Sequence[BaseNode], **insert_kwargs: Any) -> None:
        """
        Insert nodes.

        NOTE: overrides BaseIndex.insert_nodes.
            VectorStoreIndex only stores nodes in document store
            if vector store does not store text
        """
        self._validate_serializable(nodes)

        with self._callback_manager.as_trace("insert_nodes"):
            self._insert(nodes, **insert_kwargs)
            self._storage_context.index_store.add_index_struct(self._index_struct)

    def _delete_node(self, node_id: str, **delete_kwargs: Any) -> None:
        pass

    async def adelete_nodes(
        self,
        node_ids: List[str],
        delete_from_docstore: bool = False,
        **delete_kwargs: Any,
    ) -> None:
        """
        Delete a list of nodes from the index.

        Args:
            node_ids (List[str]): A list of node_ids from the nodes to delete

        """
        # delete nodes from vector store
        await self._vector_store.adelete_nodes(node_ids, **delete_kwargs)

        # delete from docstore only if needed
        if (
            not self._vector_store.stores_text or self._store_nodes_override
        ) and delete_from_docstore:
            for node_id in node_ids:
                self._index_struct.delete(node_id)
                await self._docstore.adelete_document(node_id, raise_error=False)
            self._storage_context.index_store.add_index_struct(self._index_struct)

    def delete_nodes(
        self,
        node_ids: List[str],
        delete_from_docstore: bool = False,
        **delete_kwargs: Any,
    ) -> None:
        """
        Delete a list of nodes from the index.

        Args:
            node_ids (List[str]): A list of node_ids from the nodes to delete

        """
        # delete nodes from vector store
        self._vector_store.delete_nodes(node_ids, **delete_kwargs)

        # delete from docstore only if needed
        if (
            not self._vector_store.stores_text or self._store_nodes_override
        ) and delete_from_docstore:
            for node_id in node_ids:
                self._index_struct.delete(node_id)
                self._docstore.delete_document(node_id, raise_error=False)
            self._storage_context.index_store.add_index_struct(self._index_struct)

    def _delete_from_index_struct(self, ref_doc_id: str) -> None:
        # delete from index_struct only if needed
        if not self._vector_store.stores_text or self._store_nodes_override:
            ref_doc_info = self._docstore.get_ref_doc_info(ref_doc_id)
            if ref_doc_info is not None:
                for node_id in ref_doc_info.node_ids:
                    self._index_struct.delete(node_id)
                    self._vector_store.delete(node_id)

    def _delete_from_docstore(self, ref_doc_id: str) -> None:
        # delete from docstore only if needed
        if not self._vector_store.stores_text or self._store_nodes_override:
            self._docstore.delete_ref_doc(ref_doc_id, raise_error=False)

    def delete_ref_doc(
        self, ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any
    ) -> None:
        """Delete a document and it's nodes by using ref_doc_id."""
        self._vector_store.delete(ref_doc_id, **delete_kwargs)
        self._delete_from_index_struct(ref_doc_id)
        if delete_from_docstore:
            self._delete_from_docstore(ref_doc_id)
        self._storage_context.index_store.add_index_struct(self._index_struct)

    async def _adelete_from_index_struct(self, ref_doc_id: str) -> None:
        """Delete from index_struct only if needed."""
        if not self._vector_store.stores_text or self._store_nodes_override:
            ref_doc_info = await self._docstore.aget_ref_doc_info(ref_doc_id)
            if ref_doc_info is not None:
                for node_id in ref_doc_info.node_ids:
                    self._index_struct.delete(node_id)
                    self._vector_store.delete(node_id)

    async def _adelete_from_docstore(self, ref_doc_id: str) -> None:
        """Delete from docstore only if needed."""
        if not self._vector_store.stores_text or self._store_nodes_override:
            await self._docstore.adelete_ref_doc(ref_doc_id, raise_error=False)

    async def adelete_ref_doc(
        self, ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any
    ) -> None:
        """Delete a document and it's nodes by using ref_doc_id."""
        tasks = [
            self._vector_store.adelete(ref_doc_id, **delete_kwargs),
            self._adelete_from_index_struct(ref_doc_id),
        ]
        if delete_from_docstore:
            tasks.append(self._adelete_from_docstore(ref_doc_id))

        await asyncio.gather(*tasks)

        self._storage_context.index_store.add_index_struct(self._index_struct)

    @property
    def ref_doc_info(self) -> Dict[str, RefDocInfo]:
        """Retrieve a dict mapping of ingested documents and their nodes+metadata."""
        if not self._vector_store.stores_text or self._store_nodes_override:
            node_doc_ids = list(self.index_struct.nodes_dict.values())
            nodes = self.docstore.get_nodes(node_doc_ids)

            all_ref_doc_info = {}
            for node in nodes:
                ref_node = node.source_node
                if not ref_node:
                    continue

                ref_doc_info = self.docstore.get_ref_doc_info(ref_node.node_id)
                if not ref_doc_info:
                    continue

                all_ref_doc_info[ref_node.node_id] = ref_doc_info
            return all_ref_doc_info
        else:
            raise NotImplementedError(
                "Vector store integrations that store text in the vector store are "
                "not supported by ref_doc_info yet."
            )

ref_doc_info property #

ref_doc_info: Dict[str, RefDocInfo]

Retrieve a dict mapping of ingested documents and their nodes+metadata.

build_index_from_nodes #

build_index_from_nodes(nodes: Sequence[BaseNode], **insert_kwargs: Any) -> IndexDict

Build the index from nodes.

Overrides BaseIndex.build_index_from_nodes.

VectorStoreIndex only stores nodes in document store if vector store does not store text

Source code in llama_index/core/indices/vector_store/base.py
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
def build_index_from_nodes(
    self,
    nodes: Sequence[BaseNode],
    **insert_kwargs: Any,
) -> IndexDict:
    """
    Build the index from nodes.

    NOTE: Overrides BaseIndex.build_index_from_nodes.
        VectorStoreIndex only stores nodes in document store
        if vector store does not store text
    """
    # Filter out the nodes that don't have content
    content_nodes = [
        node
        for node in nodes
        if node.get_content(metadata_mode=MetadataMode.EMBED) != ""
    ]

    # Report if some nodes are missing content
    if len(content_nodes) != len(nodes):
        print("Some nodes are missing content, skipping them...")

    return self._build_index_from_nodes(content_nodes, **insert_kwargs)

ainsert_nodes async #

ainsert_nodes(nodes: Sequence[BaseNode], **insert_kwargs: Any) -> None

Insert nodes.

overrides BaseIndex.ainsert_nodes.

VectorStoreIndex only stores nodes in document store if vector store does not store text

Source code in llama_index/core/indices/vector_store/base.py
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
async def ainsert_nodes(
    self, nodes: Sequence[BaseNode], **insert_kwargs: Any
) -> None:
    """
    Insert nodes.

    NOTE: overrides BaseIndex.ainsert_nodes.
        VectorStoreIndex only stores nodes in document store
        if vector store does not store text
    """
    self._validate_serializable(nodes)

    with self._callback_manager.as_trace("insert_nodes"):
        await self._async_add_nodes_to_index(
            self._index_struct, nodes, **insert_kwargs
        )
        self._storage_context.index_store.add_index_struct(self._index_struct)

insert_nodes #

insert_nodes(nodes: Sequence[BaseNode], **insert_kwargs: Any) -> None

Insert nodes.

overrides BaseIndex.insert_nodes.

VectorStoreIndex only stores nodes in document store if vector store does not store text

Source code in llama_index/core/indices/vector_store/base.py
343
344
345
346
347
348
349
350
351
352
353
354
355
def insert_nodes(self, nodes: Sequence[BaseNode], **insert_kwargs: Any) -> None:
    """
    Insert nodes.

    NOTE: overrides BaseIndex.insert_nodes.
        VectorStoreIndex only stores nodes in document store
        if vector store does not store text
    """
    self._validate_serializable(nodes)

    with self._callback_manager.as_trace("insert_nodes"):
        self._insert(nodes, **insert_kwargs)
        self._storage_context.index_store.add_index_struct(self._index_struct)

adelete_nodes async #

adelete_nodes(node_ids: List[str], delete_from_docstore: bool = False, **delete_kwargs: Any) -> None

Delete a list of nodes from the index.

Parameters:

Name Type Description Default
node_ids List[str]

A list of node_ids from the nodes to delete

required
Source code in llama_index/core/indices/vector_store/base.py
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
async def adelete_nodes(
    self,
    node_ids: List[str],
    delete_from_docstore: bool = False,
    **delete_kwargs: Any,
) -> None:
    """
    Delete a list of nodes from the index.

    Args:
        node_ids (List[str]): A list of node_ids from the nodes to delete

    """
    # delete nodes from vector store
    await self._vector_store.adelete_nodes(node_ids, **delete_kwargs)

    # delete from docstore only if needed
    if (
        not self._vector_store.stores_text or self._store_nodes_override
    ) and delete_from_docstore:
        for node_id in node_ids:
            self._index_struct.delete(node_id)
            await self._docstore.adelete_document(node_id, raise_error=False)
        self._storage_context.index_store.add_index_struct(self._index_struct)

delete_nodes #

delete_nodes(node_ids: List[str], delete_from_docstore: bool = False, **delete_kwargs: Any) -> None

Delete a list of nodes from the index.

Parameters:

Name Type Description Default
node_ids List[str]

A list of node_ids from the nodes to delete

required
Source code in llama_index/core/indices/vector_store/base.py
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
def delete_nodes(
    self,
    node_ids: List[str],
    delete_from_docstore: bool = False,
    **delete_kwargs: Any,
) -> None:
    """
    Delete a list of nodes from the index.

    Args:
        node_ids (List[str]): A list of node_ids from the nodes to delete

    """
    # delete nodes from vector store
    self._vector_store.delete_nodes(node_ids, **delete_kwargs)

    # delete from docstore only if needed
    if (
        not self._vector_store.stores_text or self._store_nodes_override
    ) and delete_from_docstore:
        for node_id in node_ids:
            self._index_struct.delete(node_id)
            self._docstore.delete_document(node_id, raise_error=False)
        self._storage_context.index_store.add_index_struct(self._index_struct)

delete_ref_doc #

delete_ref_doc(ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any) -> None

Delete a document and it's nodes by using ref_doc_id.

Source code in llama_index/core/indices/vector_store/base.py
424
425
426
427
428
429
430
431
432
def delete_ref_doc(
    self, ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any
) -> None:
    """Delete a document and it's nodes by using ref_doc_id."""
    self._vector_store.delete(ref_doc_id, **delete_kwargs)
    self._delete_from_index_struct(ref_doc_id)
    if delete_from_docstore:
        self._delete_from_docstore(ref_doc_id)
    self._storage_context.index_store.add_index_struct(self._index_struct)

adelete_ref_doc async #

adelete_ref_doc(ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any) -> None

Delete a document and it's nodes by using ref_doc_id.

Source code in llama_index/core/indices/vector_store/base.py
448
449
450
451
452
453
454
455
456
457
458
459
460
461
async def adelete_ref_doc(
    self, ref_doc_id: str, delete_from_docstore: bool = False, **delete_kwargs: Any
) -> None:
    """Delete a document and it's nodes by using ref_doc_id."""
    tasks = [
        self._vector_store.adelete(ref_doc_id, **delete_kwargs),
        self._adelete_from_index_struct(ref_doc_id),
    ]
    if delete_from_docstore:
        tasks.append(self._adelete_from_docstore(ref_doc_id))

    await asyncio.gather(*tasks)

    self._storage_context.index_store.add_index_struct(self._index_struct)

PropertyGraphIndex #

Bases: BaseIndex[IndexLPG]

An index for a property graph.

Parameters:

Name Type Description Default
nodes Optional[Sequence[BaseNode]]

A list of nodes to insert into the index.

None
llm Optional[LLM]

The language model to use for extracting triplets. Defaults to Settings.llm.

None
kg_extractors Optional[List[TransformComponent]]

A list of transformations to apply to the nodes to extract triplets. Defaults to [SimpleLLMPathExtractor(llm=llm), ImplicitEdgeExtractor()].

None
property_graph_store Optional[PropertyGraphStore]

The property graph store to use. If not provided, a new SimplePropertyGraphStore will be created.

None
vector_store Optional[BasePydanticVectorStore]

The vector store index to use, if the graph store does not support vector queries.

None
use_async bool

Whether to use async for transformations. Defaults to True.

True
embed_model Optional[EmbedType]

The embedding model to use for embedding nodes. If not provided, Settings.embed_model will be used if embed_kg_nodes=True.

None
embed_kg_nodes bool

Whether to embed the KG nodes. Defaults to True.

True
callback_manager Optional[CallbackManager]

The callback manager to use.

None
transformations Optional[List[TransformComponent]]

A list of transformations to apply to the nodes before inserting them into the index. These are applied prior to the kg_extractors.

None
storage_context Optional[StorageContext]

The storage context to use.

None
show_progress bool

Whether to show progress bars for transformations. Defaults to False.

False
Source code in llama_index/core/indices/property_graph/base.py
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
class PropertyGraphIndex(BaseIndex[IndexLPG]):
    """
    An index for a property graph.

    Args:
        nodes (Optional[Sequence[BaseNode]]):
            A list of nodes to insert into the index.
        llm (Optional[LLM]):
            The language model to use for extracting triplets. Defaults to `Settings.llm`.
        kg_extractors (Optional[List[TransformComponent]]):
            A list of transformations to apply to the nodes to extract triplets.
            Defaults to `[SimpleLLMPathExtractor(llm=llm), ImplicitEdgeExtractor()]`.
        property_graph_store (Optional[PropertyGraphStore]):
            The property graph store to use. If not provided, a new `SimplePropertyGraphStore` will be created.
        vector_store (Optional[BasePydanticVectorStore]):
            The vector store index to use, if the graph store does not support vector queries.
        use_async (bool):
            Whether to use async for transformations. Defaults to `True`.
        embed_model (Optional[EmbedType]):
            The embedding model to use for embedding nodes.
            If not provided, `Settings.embed_model` will be used if `embed_kg_nodes=True`.
        embed_kg_nodes (bool):
            Whether to embed the KG nodes. Defaults to `True`.
        callback_manager (Optional[CallbackManager]):
            The callback manager to use.
        transformations (Optional[List[TransformComponent]]):
            A list of transformations to apply to the nodes before inserting them into the index.
            These are applied prior to the `kg_extractors`.
        storage_context (Optional[StorageContext]):
            The storage context to use.
        show_progress (bool):
            Whether to show progress bars for transformations. Defaults to `False`.

    """

    index_struct_cls = IndexLPG

    def __init__(
        self,
        nodes: Optional[Sequence[BaseNode]] = None,
        llm: Optional[LLM] = None,
        kg_extractors: Optional[List[TransformComponent]] = None,
        property_graph_store: Optional[PropertyGraphStore] = None,
        # vector related params
        vector_store: Optional[BasePydanticVectorStore] = None,
        use_async: bool = True,
        embed_model: Optional[EmbedType] = None,
        embed_kg_nodes: bool = True,
        # parent class params
        callback_manager: Optional[CallbackManager] = None,
        transformations: Optional[List[TransformComponent]] = None,
        storage_context: Optional[StorageContext] = None,
        show_progress: bool = False,
        **kwargs: Any,
    ) -> None:
        """Init params."""
        storage_context = storage_context or StorageContext.from_defaults(
            property_graph_store=property_graph_store
        )

        # lazily initialize the graph store on the storage context
        if property_graph_store is not None:
            storage_context.property_graph_store = property_graph_store
        elif storage_context.property_graph_store is None:
            storage_context.property_graph_store = SimplePropertyGraphStore()

        if vector_store is not None:
            storage_context.vector_stores[DEFAULT_VECTOR_STORE] = vector_store

        if embed_kg_nodes and (
            storage_context.property_graph_store.supports_vector_queries
            or embed_kg_nodes
        ):
            self._embed_model = (
                resolve_embed_model(embed_model)
                if embed_model
                else Settings.embed_model
            )
        else:
            self._embed_model = None  # type: ignore

        self._kg_extractors = kg_extractors or [
            SimpleLLMPathExtractor(llm=llm or Settings.llm),
            ImplicitPathExtractor(),
        ]
        self._use_async = use_async
        self._llm = llm
        self._embed_kg_nodes = embed_kg_nodes
        self._override_vector_store = (
            vector_store is not None
            or not storage_context.property_graph_store.supports_vector_queries
        )

        super().__init__(
            nodes=nodes,
            callback_manager=callback_manager,
            storage_context=storage_context,
            transformations=transformations,
            show_progress=show_progress,
            **kwargs,
        )

    @classmethod
    def from_existing(
        cls: Type["PropertyGraphIndex"],
        property_graph_store: PropertyGraphStore,
        vector_store: Optional[BasePydanticVectorStore] = None,
        # general params
        llm: Optional[LLM] = None,
        kg_extractors: Optional[List[TransformComponent]] = None,
        # vector related params
        use_async: bool = True,
        embed_model: Optional[EmbedType] = None,
        embed_kg_nodes: bool = True,
        # parent class params
        callback_manager: Optional[CallbackManager] = None,
        transformations: Optional[List[TransformComponent]] = None,
        storage_context: Optional[StorageContext] = None,
        show_progress: bool = False,
        **kwargs: Any,
    ) -> "PropertyGraphIndex":
        """Create an index from an existing property graph store (and optional vector store)."""
        return cls(
            nodes=[],  # no nodes to insert
            property_graph_store=property_graph_store,
            vector_store=vector_store,
            llm=llm,
            kg_extractors=kg_extractors,
            use_async=use_async,
            embed_model=embed_model,
            embed_kg_nodes=embed_kg_nodes,
            callback_manager=callback_manager,
            transformations=transformations,
            storage_context=storage_context,
            show_progress=show_progress,
            **kwargs,
        )

    @property
    def property_graph_store(self) -> PropertyGraphStore:
        """Get the labelled property graph store."""
        assert self.storage_context.property_graph_store is not None

        return self.storage_context.property_graph_store

    @property
    def vector_store(self) -> Optional[BasePydanticVectorStore]:
        if self._embed_kg_nodes and self._override_vector_store:
            return self.storage_context.vector_store
        else:
            return None

    def _insert_nodes(self, nodes: Sequence[BaseNode]) -> Sequence[BaseNode]:
        """Insert nodes to the index struct."""
        if len(nodes) == 0:
            return nodes

        # run transformations on nodes to extract triplets
        if self._use_async:
            nodes = asyncio.run(
                arun_transformations(
                    nodes, self._kg_extractors, show_progress=self._show_progress
                )
            )
        else:
            nodes = run_transformations(
                nodes, self._kg_extractors, show_progress=self._show_progress
            )

        # ensure all nodes have nodes and/or relations in metadata
        assert all(
            node.metadata.get(KG_NODES_KEY) is not None
            or node.metadata.get(KG_RELATIONS_KEY) is not None
            for node in nodes
        )

        kg_nodes_to_insert: List[LabelledNode] = []
        kg_rels_to_insert: List[Relation] = []
        for node in nodes:
            # remove nodes and relations from metadata
            kg_nodes = node.metadata.pop(KG_NODES_KEY, [])
            kg_rels = node.metadata.pop(KG_RELATIONS_KEY, [])

            # add source id to properties
            for kg_node in kg_nodes:
                kg_node.properties[TRIPLET_SOURCE_KEY] = node.id_
            for kg_rel in kg_rels:
                kg_rel.properties[TRIPLET_SOURCE_KEY] = node.id_

            # add nodes and relations to insert lists
            kg_nodes_to_insert.extend(kg_nodes)
            kg_rels_to_insert.extend(kg_rels)

        # filter out duplicate kg nodes
        kg_node_ids = {node.id for node in kg_nodes_to_insert}
        existing_kg_nodes = self.property_graph_store.get(ids=list(kg_node_ids))
        existing_kg_node_ids = {node.id for node in existing_kg_nodes}
        kg_nodes_to_insert = [
            node for node in kg_nodes_to_insert if node.id not in existing_kg_node_ids
        ]

        # filter out duplicate llama nodes
        existing_nodes = self.property_graph_store.get_llama_nodes(
            [node.id_ for node in nodes]
        )
        existing_node_hashes = {node.hash for node in existing_nodes}
        nodes = [node for node in nodes if node.hash not in existing_node_hashes]

        # embed nodes (if needed)
        if self._embed_kg_nodes:
            # embed llama-index nodes
            node_texts = [
                node.get_content(metadata_mode=MetadataMode.EMBED) for node in nodes
            ]

            if self._use_async:
                embeddings = asyncio.run(
                    self._embed_model.aget_text_embedding_batch(
                        node_texts, show_progress=self._show_progress
                    )
                )
            else:
                embeddings = self._embed_model.get_text_embedding_batch(
                    node_texts, show_progress=self._show_progress
                )

            for node, embedding in zip(nodes, embeddings):
                node.embedding = embedding

            # embed kg nodes
            kg_node_texts = [str(kg_node) for kg_node in kg_nodes_to_insert]

            if self._use_async:
                kg_embeddings = asyncio.run(
                    self._embed_model.aget_text_embedding_batch(
                        kg_node_texts, show_progress=self._show_progress
                    )
                )
            else:
                kg_embeddings = self._embed_model.get_text_embedding_batch(
                    kg_node_texts,
                    show_progress=self._show_progress,
                )

            for kg_node, embedding in zip(kg_nodes_to_insert, kg_embeddings):
                kg_node.embedding = embedding

        # if graph store doesn't support vectors, or the vector index was provided, use it
        if self.vector_store is not None and len(kg_nodes_to_insert) > 0:
            self._insert_nodes_to_vector_index(kg_nodes_to_insert)

        if len(nodes) > 0:
            self.property_graph_store.upsert_llama_nodes(nodes)

        if len(kg_nodes_to_insert) > 0:
            self.property_graph_store.upsert_nodes(kg_nodes_to_insert)

        # important: upsert relations after nodes
        if len(kg_rels_to_insert) > 0:
            self.property_graph_store.upsert_relations(kg_rels_to_insert)

        # refresh schema if needed
        if self.property_graph_store.supports_structured_queries:
            self.property_graph_store.get_schema(refresh=True)

        return nodes

    def _insert_nodes_to_vector_index(self, nodes: List[LabelledNode]) -> None:
        """Insert vector nodes."""
        assert self.vector_store is not None

        llama_nodes: List[TextNode] = []
        for node in nodes:
            if node.embedding is not None:
                llama_nodes.append(
                    TextNode(
                        text=str(node),
                        metadata={VECTOR_SOURCE_KEY: node.id, **node.properties},
                        embedding=[*node.embedding],
                    )
                )
                if not self.vector_store.stores_text:
                    llama_nodes[-1].id_ = node.id

            # clear the embedding to save memory, its not used now
            node.embedding = None

        self.vector_store.add(llama_nodes)

    def _build_index_from_nodes(
        self, nodes: Optional[Sequence[BaseNode]], **build_kwargs: Any
    ) -> IndexLPG:
        """Build index from nodes."""
        nodes = self._insert_nodes(nodes or [])

        # this isn't really used or needed
        return IndexLPG()

    def as_retriever(
        self,
        sub_retrievers: Optional[List["BasePGRetriever"]] = None,
        include_text: bool = True,
        **kwargs: Any,
    ) -> BaseRetriever:
        """
        Return a retriever for the index.

        Args:
            sub_retrievers (Optional[List[BasePGRetriever]]):
                A list of sub-retrievers to use. If not provided, a default list will be used:
                `[LLMSynonymRetriever, VectorContextRetriever]` if the graph store supports vector queries.
            include_text (bool):
                Whether to include source-text in the retriever results.
            **kwargs:
                Additional kwargs to pass to the retriever.

        """
        from llama_index.core.indices.property_graph.retriever import (
            PGRetriever,
        )
        from llama_index.core.indices.property_graph.sub_retrievers.vector import (
            VectorContextRetriever,
        )
        from llama_index.core.indices.property_graph.sub_retrievers.llm_synonym import (
            LLMSynonymRetriever,
        )

        if sub_retrievers is None:
            sub_retrievers = [
                LLMSynonymRetriever(
                    graph_store=self.property_graph_store,
                    include_text=include_text,
                    llm=self._llm,
                    **kwargs,
                ),
            ]

            if self._embed_model and (
                self.property_graph_store.supports_vector_queries or self.vector_store
            ):
                sub_retrievers.append(
                    VectorContextRetriever(
                        graph_store=self.property_graph_store,
                        vector_store=self.vector_store,
                        include_text=include_text,
                        embed_model=self._embed_model,
                        **kwargs,
                    )
                )

        return PGRetriever(sub_retrievers, use_async=self._use_async, **kwargs)

    def _delete_node(self, node_id: str, **delete_kwargs: Any) -> None:
        """Delete a node."""
        self.property_graph_store.delete(ids=[node_id])

    def _insert(self, nodes: Sequence[BaseNode], **insert_kwargs: Any) -> None:
        """Index-specific logic for inserting nodes to the index struct."""
        self._insert_nodes(nodes)

    @property
    def ref_doc_info(self) -> Dict[str, RefDocInfo]:
        """Retrieve a dict mapping of ingested documents and their nodes+metadata."""
        raise NotImplementedError(
            "Ref doc info not implemented for PropertyGraphIndex. "
            "All inserts are already upserts."
        )

property_graph_store property #

property_graph_store: PropertyGraphStore

Get the labelled property graph store.

ref_doc_info property #

ref_doc_info: Dict[str, RefDocInfo]

Retrieve a dict mapping of ingested documents and their nodes+metadata.

from_existing classmethod #

from_existing(property_graph_store: PropertyGraphStore, vector_store: Optional[BasePydanticVectorStore] = None, llm: Optional[LLM] = None, kg_extractors: Optional[List[TransformComponent]] = None, use_async: bool = True, embed_model: Optional[EmbedType] = None, embed_kg_nodes: bool = True, callback_manager: Optional[CallbackManager] = None, transformations: Optional[List[TransformComponent]] = None, storage_context: Optional[StorageContext] = None, show_progress: bool = False, **kwargs: Any) -> PropertyGraphIndex

Create an index from an existing property graph store (and optional vector store).

Source code in llama_index/core/indices/property_graph/base.py
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
@classmethod
def from_existing(
    cls: Type["PropertyGraphIndex"],
    property_graph_store: PropertyGraphStore,
    vector_store: Optional[BasePydanticVectorStore] = None,
    # general params
    llm: Optional[LLM] = None,
    kg_extractors: Optional[List[TransformComponent]] = None,
    # vector related params
    use_async: bool = True,
    embed_model: Optional[EmbedType] = None,
    embed_kg_nodes: bool = True,
    # parent class params
    callback_manager: Optional[CallbackManager] = None,
    transformations: Optional[List[TransformComponent]] = None,
    storage_context: Optional[StorageContext] = None,
    show_progress: bool = False,
    **kwargs: Any,
) -> "PropertyGraphIndex":
    """Create an index from an existing property graph store (and optional vector store)."""
    return cls(
        nodes=[],  # no nodes to insert
        property_graph_store=property_graph_store,
        vector_store=vector_store,
        llm=llm,
        kg_extractors=kg_extractors,
        use_async=use_async,
        embed_model=embed_model,
        embed_kg_nodes=embed_kg_nodes,
        callback_manager=callback_manager,
        transformations=transformations,
        storage_context=storage_context,
        show_progress=show_progress,
        **kwargs,
    )

as_retriever #

as_retriever(sub_retrievers: Optional[List[BasePGRetriever]] = None, include_text: bool = True, **kwargs: Any) -> BaseRetriever

Return a retriever for the index.

Parameters:

Name Type Description Default
sub_retrievers Optional[List[BasePGRetriever]]

A list of sub-retrievers to use. If not provided, a default list will be used: [LLMSynonymRetriever, VectorContextRetriever] if the graph store supports vector queries.

None
include_text bool

Whether to include source-text in the retriever results.

True
**kwargs Any

Additional kwargs to pass to the retriever.

{}
Source code in llama_index/core/indices/property_graph/base.py
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def as_retriever(
    self,
    sub_retrievers: Optional[List["BasePGRetriever"]] = None,
    include_text: bool = True,
    **kwargs: Any,
) -> BaseRetriever:
    """
    Return a retriever for the index.

    Args:
        sub_retrievers (Optional[List[BasePGRetriever]]):
            A list of sub-retrievers to use. If not provided, a default list will be used:
            `[LLMSynonymRetriever, VectorContextRetriever]` if the graph store supports vector queries.
        include_text (bool):
            Whether to include source-text in the retriever results.
        **kwargs:
            Additional kwargs to pass to the retriever.

    """
    from llama_index.core.indices.property_graph.retriever import (
        PGRetriever,
    )
    from llama_index.core.indices.property_graph.sub_retrievers.vector import (
        VectorContextRetriever,
    )
    from llama_index.core.indices.property_graph.sub_retrievers.llm_synonym import (
        LLMSynonymRetriever,
    )

    if sub_retrievers is None:
        sub_retrievers = [
            LLMSynonymRetriever(
                graph_store=self.property_graph_store,
                include_text=include_text,
                llm=self._llm,
                **kwargs,
            ),
        ]

        if self._embed_model and (
            self.property_graph_store.supports_vector_queries or self.vector_store
        ):
            sub_retrievers.append(
                VectorContextRetriever(
                    graph_store=self.property_graph_store,
                    vector_store=self.vector_store,
                    include_text=include_text,
                    embed_model=self._embed_model,
                    **kwargs,
                )
            )

    return PGRetriever(sub_retrievers, use_async=self._use_async, **kwargs)

load_graph_from_storage #

load_graph_from_storage(storage_context: StorageContext, root_id: str, **kwargs: Any) -> ComposableGraph

Load composable graph from storage context.

Parameters:

Name Type Description Default
storage_context StorageContext

storage context containing docstore, index store and vector store.

required
root_id str

ID of the root index of the graph.

required
**kwargs Any

Additional keyword args to pass to the index constructors.

{}
Source code in llama_index/core/indices/loading.py
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
def load_graph_from_storage(
    storage_context: StorageContext,
    root_id: str,
    **kwargs: Any,
) -> ComposableGraph:
    """
    Load composable graph from storage context.

    Args:
        storage_context (StorageContext): storage context containing
            docstore, index store and vector store.
        root_id (str): ID of the root index of the graph.
        **kwargs: Additional keyword args to pass to the index constructors.

    """
    indices = load_indices_from_storage(storage_context, index_ids=None, **kwargs)
    all_indices = {index.index_id: index for index in indices}
    return ComposableGraph(all_indices=all_indices, root_id=root_id)

load_index_from_storage #

load_index_from_storage(storage_context: StorageContext, index_id: Optional[str] = None, **kwargs: Any) -> BaseIndex

Load index from storage context.

Parameters:

Name Type Description Default
storage_context StorageContext

storage context containing docstore, index store and vector store.

required
index_id Optional[str]

ID of the index to load. Defaults to None, which assumes there's only a single index in the index store and load it.

None
**kwargs Any

Additional keyword args to pass to the index constructors.

{}
Source code in llama_index/core/indices/loading.py
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def load_index_from_storage(
    storage_context: StorageContext,
    index_id: Optional[str] = None,
    **kwargs: Any,
) -> BaseIndex:
    """
    Load index from storage context.

    Args:
        storage_context (StorageContext): storage context containing
            docstore, index store and vector store.
        index_id (Optional[str]): ID of the index to load.
            Defaults to None, which assumes there's only a single index
            in the index store and load it.
        **kwargs: Additional keyword args to pass to the index constructors.

    """
    index_ids: Optional[Sequence[str]]
    if index_id is None:
        index_ids = None
    else:
        index_ids = [index_id]

    indices = load_indices_from_storage(storage_context, index_ids=index_ids, **kwargs)

    if len(indices) == 0:
        raise ValueError(
            "No index in storage context, check if you specified the right persist_dir."
        )
    elif len(indices) > 1:
        raise ValueError(
            f"Expected to load a single index, but got {len(indices)} instead. "
            "Please specify index_id."
        )

    return indices[0]

load_indices_from_storage #

load_indices_from_storage(storage_context: StorageContext, index_ids: Optional[Sequence[str]] = None, **kwargs: Any) -> List[BaseIndex]

Load multiple indices from storage context.

Parameters:

Name Type Description Default
storage_context StorageContext

storage context containing docstore, index store and vector store.

required
index_id Optional[Sequence[str]]

IDs of the indices to load. Defaults to None, which loads all indices in the index store.

required
**kwargs Any

Additional keyword args to pass to the index constructors.

{}
Source code in llama_index/core/indices/loading.py
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
def load_indices_from_storage(
    storage_context: StorageContext,
    index_ids: Optional[Sequence[str]] = None,
    **kwargs: Any,
) -> List[BaseIndex]:
    """
    Load multiple indices from storage context.

    Args:
        storage_context (StorageContext): storage context containing
            docstore, index store and vector store.
        index_id (Optional[Sequence[str]]): IDs of the indices to load.
            Defaults to None, which loads all indices in the index store.
        **kwargs: Additional keyword args to pass to the index constructors.

    """
    if index_ids is None:
        logger.info("Loading all indices.")
        index_structs = storage_context.index_store.index_structs()
    else:
        logger.info(f"Loading indices with ids: {index_ids}")
        index_structs = []
        for index_id in index_ids:
            index_struct = storage_context.index_store.get_index_struct(index_id)
            if index_struct is None:
                raise ValueError(f"Failed to load index with ID {index_id}")
            index_structs.append(index_struct)

    indices = []
    for index_struct in index_structs:
        type_ = index_struct.get_type()
        index_cls = INDEX_STRUCT_TYPE_TO_INDEX_CLASS[type_]
        index = index_cls(
            index_struct=index_struct, storage_context=storage_context, **kwargs
        )
        indices.append(index)
    return indices

options: members: - SummaryIndex