Index
ToolSelection #
Bases: BaseModel
Tool selection.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
tool_id
|
str
|
Tool ID to select. |
required |
tool_name
|
str
|
Tool name to select. |
required |
tool_kwargs
|
Dict[str, Any]
|
Keyword arguments for the tool. |
required |
Source code in llama_index/core/llms/llm.py
70 71 72 73 74 75 76 77 78 79 80 81 82 83 | |
LLM #
Bases: BaseLLM
The LLM class is the main class for interacting with language models.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
system_prompt
|
str | None
|
System prompt for LLM calls. |
None
|
messages_to_prompt
|
MessagesToPromptType | None
|
Function to convert a list of messages to an LLM prompt. |
None
|
completion_to_prompt
|
CompletionToPromptType | None
|
Function to convert a completion to an LLM prompt. |
None
|
output_parser
|
BaseOutputParser | None
|
Output parser to parse, validate, and correct errors programmatically. |
None
|
pydantic_program_mode
|
PydanticProgramMode
|
|
<PydanticProgramMode.DEFAULT: 'default'>
|
query_wrapper_prompt
|
BasePromptTemplate | None
|
Query wrapper prompt for LLM calls. |
None
|
Attributes:
| Name | Type | Description |
|---|---|---|
system_prompt |
Optional[str]
|
System prompt for LLM calls. |
messages_to_prompt |
Callable
|
Function to convert a list of messages to an LLM prompt. |
completion_to_prompt |
Callable
|
Function to convert a completion to an LLM prompt. |
output_parser |
Optional[BaseOutputParser]
|
Output parser to parse, validate, and correct errors programmatically. |
pydantic_program_mode |
PydanticProgramMode
|
Pydantic program mode to use for structured prediction. |
Source code in llama_index/core/llms/llm.py
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 | |
structured_predict #
structured_predict(output_cls: Type[Model], prompt: PromptTemplate, llm_kwargs: Optional[Dict[str, Any]] = None, **prompt_args: Any) -> Model
Structured predict.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
output_cls
|
BaseModel
|
Output class to use for structured prediction. |
required |
prompt
|
PromptTemplate
|
Prompt template to use for structured prediction. |
required |
llm_kwargs
|
Optional[Dict[str, Any]]
|
Arguments that are passed down to the LLM invoked by the program. |
None
|
prompt_args
|
Any
|
Additional arguments to format the prompt with. |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
BaseModel |
Model
|
The structured prediction output. |
Examples:
from pydantic import BaseModel
class Test(BaseModel):
\"\"\"My test class.\"\"\"
name: str
from llama_index.core.prompts import PromptTemplate
prompt = PromptTemplate("Please predict a Test with a random name related to {topic}.")
output = llm.structured_predict(Test, prompt, topic="cats")
print(output.name)
Source code in llama_index/core/llms/llm.py
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 | |
astructured_predict
async
#
astructured_predict(output_cls: Type[Model], prompt: PromptTemplate, llm_kwargs: Optional[Dict[str, Any]] = None, **prompt_args: Any) -> Model
Async Structured predict.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
output_cls
|
BaseModel
|
Output class to use for structured prediction. |
required |
prompt
|
PromptTemplate
|
Prompt template to use for structured prediction. |
required |
llm_kwargs
|
Optional[Dict[str, Any]]
|
Arguments that are passed down to the LLM invoked by the program. |
None
|
prompt_args
|
Any
|
Additional arguments to format the prompt with. |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
BaseModel |
Model
|
The structured prediction output. |
Examples:
from pydantic import BaseModel
class Test(BaseModel):
\"\"\"My test class.\"\"\"
name: str
from llama_index.core.prompts import PromptTemplate
prompt = PromptTemplate("Please predict a Test with a random name related to {topic}.")
output = await llm.astructured_predict(Test, prompt, topic="cats")
print(output.name)
Source code in llama_index/core/llms/llm.py
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 | |
stream_structured_predict #
stream_structured_predict(output_cls: Type[Model], prompt: PromptTemplate, llm_kwargs: Optional[Dict[str, Any]] = None, **prompt_args: Any) -> Generator[Union[Model, FlexibleModel], None, None]
Stream Structured predict.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
output_cls
|
BaseModel
|
Output class to use for structured prediction. |
required |
prompt
|
PromptTemplate
|
Prompt template to use for structured prediction. |
required |
llm_kwargs
|
Optional[Dict[str, Any]]
|
Arguments that are passed down to the LLM invoked by the program. |
None
|
prompt_args
|
Any
|
Additional arguments to format the prompt with. |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
Generator |
None
|
A generator returning partial copies of the model or list of models. |
Examples:
from pydantic import BaseModel
class Test(BaseModel):
\"\"\"My test class.\"\"\"
name: str
from llama_index.core.prompts import PromptTemplate
prompt = PromptTemplate("Please predict a Test with a random name related to {topic}.")
stream_output = llm.stream_structured_predict(Test, prompt, topic="cats")
for partial_output in stream_output:
# stream partial outputs until completion
print(partial_output.name)
Source code in llama_index/core/llms/llm.py
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 | |
astream_structured_predict
async
#
astream_structured_predict(output_cls: Type[Model], prompt: PromptTemplate, llm_kwargs: Optional[Dict[str, Any]] = None, **prompt_args: Any) -> AsyncGenerator[Union[Model, FlexibleModel], None]
Async Stream Structured predict.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
output_cls
|
BaseModel
|
Output class to use for structured prediction. |
required |
prompt
|
PromptTemplate
|
Prompt template to use for structured prediction. |
required |
llm_kwargs
|
Optional[Dict[str, Any]]
|
Arguments that are passed down to the LLM invoked by the program. |
None
|
prompt_args
|
Any
|
Additional arguments to format the prompt with. |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
Generator |
AsyncGenerator[Union[Model, FlexibleModel], None]
|
A generator returning partial copies of the model or list of models. |
Examples:
from pydantic import BaseModel
class Test(BaseModel):
\"\"\"My test class.\"\"\"
name: str
from llama_index.core.prompts import PromptTemplate
prompt = PromptTemplate("Please predict a Test with a random name related to {topic}.")
stream_output = await llm.astream_structured_predict(Test, prompt, topic="cats")
async for partial_output in stream_output:
# stream partial outputs until completion
print(partial_output.name)
Source code in llama_index/core/llms/llm.py
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 | |
predict #
predict(prompt: BasePromptTemplate, **prompt_args: Any) -> str
Predict for a given prompt.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
BasePromptTemplate
|
The prompt to use for prediction. |
required |
prompt_args
|
Any
|
Additional arguments to format the prompt with. |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
str |
str
|
The prediction output. |
Examples:
from llama_index.core.prompts import PromptTemplate
prompt = PromptTemplate("Please write a random name related to {topic}.")
output = llm.predict(prompt, topic="cats")
print(output)
Source code in llama_index/core/llms/llm.py
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 | |
stream #
stream(prompt: BasePromptTemplate, **prompt_args: Any) -> TokenGen
Stream predict for a given prompt.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
BasePromptTemplate
|
The prompt to use for prediction. |
required |
prompt_args
|
Any
|
Additional arguments to format the prompt with. |
{}
|
Yields:
| Name | Type | Description |
|---|---|---|
str |
TokenGen
|
Each streamed token. |
Examples:
from llama_index.core.prompts import PromptTemplate
prompt = PromptTemplate("Please write a random name related to {topic}.")
gen = llm.stream(prompt, topic="cats")
for token in gen:
print(token, end="", flush=True)
Source code in llama_index/core/llms/llm.py
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 | |
apredict
async
#
apredict(prompt: BasePromptTemplate, **prompt_args: Any) -> str
Async Predict for a given prompt.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
BasePromptTemplate
|
The prompt to use for prediction. |
required |
prompt_args
|
Any
|
Additional arguments to format the prompt with. |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
str |
str
|
The prediction output. |
Examples:
from llama_index.core.prompts import PromptTemplate
prompt = PromptTemplate("Please write a random name related to {topic}.")
output = await llm.apredict(prompt, topic="cats")
print(output)
Source code in llama_index/core/llms/llm.py
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 | |
astream
async
#
astream(prompt: BasePromptTemplate, **prompt_args: Any) -> TokenAsyncGen
Async stream predict for a given prompt.
prompt (BasePromptTemplate): The prompt to use for prediction. prompt_args (Any): Additional arguments to format the prompt with.
Yields:
| Name | Type | Description |
|---|---|---|
str |
TokenAsyncGen
|
An async generator that yields strings of tokens. |
Examples:
from llama_index.core.prompts import PromptTemplate
prompt = PromptTemplate("Please write a random name related to {topic}.")
gen = await llm.astream(prompt, topic="cats")
async for token in gen:
print(token, end="", flush=True)
Source code in llama_index/core/llms/llm.py
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 | |
predict_and_call #
predict_and_call(tools: List[BaseTool], user_msg: Optional[Union[str, ChatMessage]] = None, chat_history: Optional[List[ChatMessage]] = None, verbose: bool = False, **kwargs: Any) -> AgentChatResponse
Predict and call the tool.
By default uses a ReAct agent to do tool calling (through text prompting), but function calling LLMs will implement this differently.
Source code in llama_index/core/llms/llm.py
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 | |
apredict_and_call
async
#
apredict_and_call(tools: List[BaseTool], user_msg: Optional[Union[str, ChatMessage]] = None, chat_history: Optional[List[ChatMessage]] = None, verbose: bool = False, **kwargs: Any) -> AgentChatResponse
Predict and call the tool.
Source code in llama_index/core/llms/llm.py
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 | |
as_structured_llm #
as_structured_llm(output_cls: Type[BaseModel], **kwargs: Any) -> StructuredLLM
Return a structured LLM around a given object.
Source code in llama_index/core/llms/llm.py
922 923 924 925 926 927 928 929 930 | |
stream_completion_response_to_tokens #
stream_completion_response_to_tokens(completion_response_gen: CompletionResponseGen) -> TokenGen
Convert a stream completion response to a stream of tokens.
Source code in llama_index/core/llms/llm.py
99 100 101 102 103 104 105 106 107 108 | |
stream_chat_response_to_tokens #
stream_chat_response_to_tokens(chat_response_gen: ChatResponseGen) -> TokenGen
Convert a stream completion response to a stream of tokens.
Source code in llama_index/core/llms/llm.py
111 112 113 114 115 116 117 118 119 120 | |
astream_completion_response_to_tokens
async
#
astream_completion_response_to_tokens(completion_response_gen: CompletionResponseAsyncGen) -> TokenAsyncGen
Convert a stream completion response to a stream of tokens.
Source code in llama_index/core/llms/llm.py
123 124 125 126 127 128 129 130 131 132 | |
astream_chat_response_to_tokens
async
#
astream_chat_response_to_tokens(chat_response_gen: ChatResponseAsyncGen) -> TokenAsyncGen
Convert a stream completion response to a stream of tokens.
Source code in llama_index/core/llms/llm.py
135 136 137 138 139 140 141 142 143 144 | |
options: members: - LLM show_source: false inherited_members: true
MessageRole #
Bases: str, Enum
Message role.
Source code in llama_index/core/base/llms/types.py
40 41 42 43 44 45 46 47 48 49 50 | |
TextBlock #
Bases: BaseModel
A representation of text data to directly pass to/from the LLM.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
block_type
|
Literal['text']
|
|
'text'
|
text
|
str
|
|
required |
Source code in llama_index/core/base/llms/types.py
53 54 55 56 57 | |
ImageBlock #
Bases: BaseModel
A representation of image data to directly pass to/from the LLM.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
block_type
|
Literal['image']
|
|
'image'
|
image
|
bytes | None
|
|
None
|
path
|
Annotated[Path, PathType] | None
|
|
None
|
url
|
AnyUrl | str | None
|
|
None
|
image_mimetype
|
str | None
|
|
None
|
detail
|
str | None
|
|
None
|
Source code in llama_index/core/base/llms/types.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | |
urlstr_to_anyurl
classmethod
#
urlstr_to_anyurl(url: str | AnyUrl | None) -> AnyUrl | None
Store the url as Anyurl.
Source code in llama_index/core/base/llms/types.py
70 71 72 73 74 75 76 77 78 79 | |
image_to_base64 #
image_to_base64() -> Self
Store the image as base64 and guess the mimetype when possible.
In case the model was built passing image data but without a mimetype, we try to guess it using the filetype library. To avoid resource-intense operations, we won't load the path or the URL to guess the mimetype.
Source code in llama_index/core/base/llms/types.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | |
resolve_image #
resolve_image(as_base64: bool = False) -> BytesIO
Resolve an image such that PIL can read it.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
as_base64
|
bool
|
whether the resolved image should be returned as base64-encoded bytes |
False
|
Source code in llama_index/core/base/llms/types.py
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | |
AudioBlock #
Bases: BaseModel
A representation of audio data to directly pass to/from the LLM.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
block_type
|
Literal['audio']
|
|
'audio'
|
audio
|
bytes | None
|
|
None
|
path
|
Annotated[Path, PathType] | None
|
|
None
|
url
|
AnyUrl | str | None
|
|
None
|
format
|
str | None
|
|
None
|
Source code in llama_index/core/base/llms/types.py
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | |
urlstr_to_anyurl
classmethod
#
urlstr_to_anyurl(url: str | AnyUrl) -> AnyUrl
Store the url as Anyurl.
Source code in llama_index/core/base/llms/types.py
152 153 154 155 156 157 158 | |
audio_to_base64 #
audio_to_base64() -> Self
Store the audio as base64 and guess the mimetype when possible.
In case the model was built passing audio data but without a mimetype, we try to guess it using the filetype library. To avoid resource-intense operations, we won't load the path or the URL to guess the mimetype.
Source code in llama_index/core/base/llms/types.py
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | |
resolve_audio #
resolve_audio(as_base64: bool = False) -> BytesIO
Resolve an audio such that PIL can read it.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
as_base64
|
bool
|
whether the resolved audio should be returned as base64-encoded bytes |
False
|
Source code in llama_index/core/base/llms/types.py
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | |
VideoBlock #
Bases: BaseModel
A representation of video data to directly pass to/from the LLM.
Source code in llama_index/core/base/llms/types.py
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 | |
urlstr_to_anyurl
classmethod
#
urlstr_to_anyurl(url: str | AnyUrl | None) -> AnyUrl | None
Store the url as AnyUrl.
Source code in llama_index/core/base/llms/types.py
224 225 226 227 228 229 230 231 232 | |
video_to_base64 #
video_to_base64() -> 'VideoBlock'
Store the video as base64 and guess the mimetype when possible.
If video data is passed but no mimetype is provided, try to infer it.
Source code in llama_index/core/base/llms/types.py
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | |
resolve_video #
resolve_video(as_base64: bool = False) -> BytesIO
Resolve a video file to a BytesIO buffer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
as_base64
|
bool
|
whether to return the video as base64-encoded bytes |
False
|
Source code in llama_index/core/base/llms/types.py
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 | |
DocumentBlock #
Bases: BaseModel
A representation of a document to directly pass to the LLM.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
block_type
|
Literal['document']
|
|
'document'
|
data
|
bytes | None
|
|
None
|
path
|
Annotated[Path, PathType] | str | None
|
|
None
|
url
|
str | None
|
|
None
|
title
|
str | None
|
|
None
|
document_mimetype
|
str | None
|
|
None
|
Source code in llama_index/core/base/llms/types.py
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | |
resolve_document #
resolve_document() -> BytesIO
Resolve a document such that it is represented by a BufferIO object.
Source code in llama_index/core/base/llms/types.py
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 | |
CacheControl #
Bases: BaseModel
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
type
|
str
|
|
required |
ttl
|
str
|
|
'5m'
|
Source code in llama_index/core/base/llms/types.py
372 373 374 | |
CachePoint #
Bases: BaseModel
Used to set the point to cache up to, if the LLM supports caching.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
block_type
|
Literal['cache']
|
|
'cache'
|
cache_control
|
CacheControl
|
|
required |
Source code in llama_index/core/base/llms/types.py
377 378 379 380 381 | |
CitableBlock #
Bases: BaseModel
Supports providing citable content to LLMs that have built-in citation support.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
block_type
|
Literal['citable']
|
|
'citable'
|
title
|
str
|
|
required |
source
|
str
|
|
required |
content
|
List[Annotated[Union[TextBlock, ImageBlock, DocumentBlock], FieldInfo]]
|
|
required |
Source code in llama_index/core/base/llms/types.py
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 | |
CitationBlock #
Bases: BaseModel
A representation of cited content from past messages.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
block_type
|
Literal['citation']
|
|
'citation'
|
cited_content
|
TextBlock | ImageBlock
|
|
required |
source
|
str
|
|
required |
title
|
str
|
|
required |
additional_location_info
|
Dict[str, int]
|
|
required |
Source code in llama_index/core/base/llms/types.py
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 | |
ThinkingBlock #
Bases: BaseModel
A representation of the content streamed from reasoning/thinking processes by LLMs
Source code in llama_index/core/base/llms/types.py
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 | |
ChatMessage #
Bases: BaseModel
Chat message.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
role
|
MessageRole
|
|
<MessageRole.USER: 'user'>
|
blocks
|
list[Annotated[Union[TextBlock, ImageBlock, AudioBlock, DocumentBlock, CachePoint, CitableBlock, CitationBlock], FieldInfo]]
|
Built-in mutable sequence. If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified. |
<dynamic>
|
Source code in llama_index/core/base/llms/types.py
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 | |
content
property
writable
#
content: str | None
Keeps backward compatibility with the old content field.
Returns:
| Type | Description |
|---|---|
str | None
|
The cumulative content of the TextBlock blocks, None if there are none. |
legacy_additional_kwargs_image #
legacy_additional_kwargs_image() -> Self
Provided for backward compatibility.
If additional_kwargs contains an images key, assume the value is a list
of ImageDocument and convert them into image blocks.
Source code in llama_index/core/base/llms/types.py
497 498 499 500 501 502 503 504 505 506 507 508 509 510 | |
LogProb #
Bases: BaseModel
LogProb of a token.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
logprob
|
float
|
Convert a string or number to a floating point number, if possible. |
<dynamic>
|
bytes
|
List[int]
|
Built-in mutable sequence. If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified. |
<dynamic>
|
Source code in llama_index/core/base/llms/types.py
585 586 587 588 589 590 | |
ChatResponse #
Bases: BaseModel
Chat response.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
message
|
ChatMessage
|
|
required |
raw
|
Any | None
|
|
None
|
delta
|
str | None
|
|
None
|
logprobs
|
List[List[LogProb]] | None
|
|
None
|
Source code in llama_index/core/base/llms/types.py
594 595 596 597 598 599 600 601 602 603 604 | |
CompletionResponse #
Bases: BaseModel
Completion response.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
text
|
str
|
|
required |
raw
|
Any | None
|
|
None
|
logprobs
|
List[List[LogProb]] | None
|
|
None
|
delta
|
str | None
|
|
None
|
Fields
text: Text content of the response if not streaming, or if streaming, the current extent of streamed text. additional_kwargs: Additional information on the response(i.e. token counts, function calling information). raw: Optional raw JSON that was parsed to populate text, if relevant. delta: New text that just streamed in (only relevant when streaming).
Source code in llama_index/core/base/llms/types.py
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 | |
LLMMetadata #
Bases: BaseModel
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
context_window
|
int
|
Total number of tokens the model can be input and output for one response. |
3900
|
num_output
|
int
|
Number of tokens the model can output when generating a response. |
256
|
is_chat_model
|
bool
|
Set True if the model exposes a chat interface (i.e. can be passed a sequence of messages, rather than text), like OpenAI's /v1/chat/completions endpoint. |
False
|
is_function_calling_model
|
bool
|
Set True if the model supports function calling messages, similar to OpenAI's function calling API. For example, converting 'Email Anya to see if she wants to get coffee next Friday' to a function call like |
False
|
model_name
|
str
|
The model's name used for logging, testing, and sanity checking. For some models this can be automatically discerned. For other models, like locally loaded models, this must be manually specified. |
'unknown'
|
system_role
|
MessageRole
|
The role this specific LLM providerexpects for system prompt. E.g. 'SYSTEM' for OpenAI, 'CHATBOT' for Cohere |
<MessageRole.SYSTEM: 'system'>
|
Source code in llama_index/core/base/llms/types.py
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 | |