Skip to content

Bedrock converse

BedrockConverse #

Bases: FunctionCallingLLM

Bedrock Converse LLM.

Examples:

pip install llama-index-llms-bedrock-converse

from llama_index.llms.bedrock_converse import BedrockConverse

llm = BedrockConverse(
    model="anthropic.claude-3-haiku-20240307-v1:0",
    aws_access_key_id="AWS Access Key ID to use",
    aws_secret_access_key="AWS Secret Access Key to use",
    aws_session_token="AWS Session Token to use",
    region_name="AWS Region to use, eg. us-east-1",
)

resp = llm.complete("Paul Graham is ")
print(resp)
Source code in llama_index/llms/bedrock_converse/base.py
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
class BedrockConverse(FunctionCallingLLM):
    """
    Bedrock Converse LLM.

    Examples:
        `pip install llama-index-llms-bedrock-converse`

        ```python
        from llama_index.llms.bedrock_converse import BedrockConverse

        llm = BedrockConverse(
            model="anthropic.claude-3-haiku-20240307-v1:0",
            aws_access_key_id="AWS Access Key ID to use",
            aws_secret_access_key="AWS Secret Access Key to use",
            aws_session_token="AWS Session Token to use",
            region_name="AWS Region to use, eg. us-east-1",
        )

        resp = llm.complete("Paul Graham is ")
        print(resp)
        ```

    """

    model: str = Field(description="The modelId of the Bedrock model to use.")
    temperature: float = Field(
        default=DEFAULT_TEMPERATURE,
        description="The temperature to use for sampling.",
        ge=0.0,
        le=1.0,
    )
    max_tokens: int = Field(description="The maximum number of tokens to generate.")
    profile_name: Optional[str] = Field(
        description="The name of aws profile to use. If not given, then the default profile is used."
    )
    aws_access_key_id: Optional[str] = Field(
        description="AWS Access Key ID to use", exclude=True
    )
    aws_secret_access_key: Optional[str] = Field(
        description="AWS Secret Access Key to use", exclude=True
    )
    aws_session_token: Optional[str] = Field(
        description="AWS Session Token to use", exclude=True
    )
    region_name: Optional[str] = Field(
        description="AWS region name to use. Uses region configured in AWS CLI if not passed",
        exclude=True,
    )
    api_version: Optional[str] = Field(
        description=(
            "The API version to use. By default, botocore will use the latest API version when creating a client. "
            "You only need to specify this parameter if you want to use a previous API version of the client."
        ),
        exclude=True,
    )
    use_ssl: bool = Field(
        description="Whether or not to use SSL. By default, SSL is used. Note that not all services support non-ssl connections.",
        exclude=True,
    )
    verify: Optional[Union[bool, str]] = Field(
        description="Whether or not to verify SSL certificates. By default SSL certificates are verified.",
        exclude=True,
    )
    endpoint_url: Optional[str] = Field(
        description=(
            "The complete URL to use for the constructed client. Normally, botocore will automatically construct the appropriate "
            "URL to use when communicating with a service.  You can specify a complete URL (including the 'http/https' scheme) to override this behavior. "
            "If this value is provided, then ``use_ssl`` is ignored."
        ),
        exclude=True,
    )
    botocore_session: Optional[Any] = Field(
        description="Use this Botocore session instead of creating a new default one.",
        exclude=True,
    )
    botocore_config: Optional[Any] = Field(
        description="Custom configuration object to use instead of the default generated one.",
        exclude=True,
    )
    max_retries: int = Field(
        default=10, description="The maximum number of API retries.", gt=0
    )
    timeout: float = Field(
        default=60.0,
        description="The timeout for the Bedrock API request in seconds. It will be used for both connect and read timeouts.",
    )
    system_prompt_caching: bool = Field(
        default=False,
        description="Whether to cache the system prompt. If you are using a system prompt, you should set this to True.",
    )
    tool_caching: bool = Field(
        default=False,
        description="Whether to cache the tools. If you are using tools, you should set this to True.",
    )
    guardrail_identifier: Optional[str] = Field(
        description="The unique identifier of the guardrail that you want to use. If you don't provide a value, no guardrail is applied to the invocation."
    )
    guardrail_version: Optional[str] = Field(
        description="The version number for the guardrail. The value can also be DRAFT"
    )
    guardrail_stream_processing_mode: Optional[Literal["sync", "async"]] = Field(
        description=(
            "The stream processing mode to use when leveraging a guardrail in a streaming request (ConverseStream). "
            "If set, the specified mode will be included in the request's guardrail configuration object, altering the streaming response behavior. "
            "If a value is not provided, no mode will be explicitly included in the request's guardrail configuration object, and thus Amazon Bedrock's default, Synchronous Mode, will be used."
        )
    )
    application_inference_profile_arn: Optional[str] = Field(
        description="The ARN of an application inference profile to invoke in place of the model. If provided, make sure the model argument refers to the same one underlying the application inference profile."
    )
    trace: Optional[str] = Field(
        description="Specifies whether to enable or disable the Bedrock trace. If enabled, you can see the full Bedrock trace."
    )
    thinking: Optional[ThinkingDict] = Field(
        description="Specifies the thinking configuration of a reasoning model. Only applicable to Anthropic and DeepSeek models",
        default=None,
    )
    supports_forced_tool_calls: bool = Field(
        default=True,
        description="Whether the model supports forced tool calls. If True, the model can be forced to call at least 1 or more tools.",
    )
    additional_kwargs: Dict[str, Any] = Field(
        default_factory=dict,
        description="Additional kwargs for the bedrock invokeModel request.",
    )

    _config: Any = PrivateAttr()
    _client: Any = PrivateAttr()
    _asession: Any = PrivateAttr()
    _boto_client_kwargs: Any = PrivateAttr()

    def __init__(
        self,
        model: str,
        temperature: float = DEFAULT_TEMPERATURE,
        max_tokens: Optional[int] = 512,
        profile_name: Optional[str] = None,
        aws_access_key_id: Optional[str] = None,
        aws_secret_access_key: Optional[str] = None,
        aws_session_token: Optional[str] = None,
        region_name: Optional[str] = None,
        api_version: Optional[str] = None,
        use_ssl: bool = True,
        verify: Optional[Union[bool, str]] = None,
        endpoint_url: Optional[str] = None,
        botocore_session: Optional[Any] = None,
        client: Optional[Any] = None,
        timeout: Optional[float] = 60.0,
        max_retries: Optional[int] = 10,
        botocore_config: Optional[Any] = None,
        additional_kwargs: Optional[Dict[str, Any]] = None,
        callback_manager: Optional[CallbackManager] = None,
        system_prompt: Optional[str] = None,
        system_prompt_caching: Optional[bool] = False,
        tool_caching: Optional[bool] = False,
        messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
        completion_to_prompt: Optional[Callable[[str], str]] = None,
        pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
        output_parser: Optional[BaseOutputParser] = None,
        guardrail_identifier: Optional[str] = None,
        guardrail_version: Optional[str] = None,
        guardrail_stream_processing_mode: Optional[Literal["sync", "async"]] = None,
        application_inference_profile_arn: Optional[str] = None,
        trace: Optional[str] = None,
        thinking: Optional[ThinkingDict] = None,
        supports_forced_tool_calls: bool = True,
    ) -> None:
        additional_kwargs = additional_kwargs or {}
        callback_manager = callback_manager or CallbackManager([])

        session_kwargs = {
            "profile_name": profile_name,
            "region_name": region_name,
            "aws_access_key_id": aws_access_key_id,
            "aws_secret_access_key": aws_secret_access_key,
            "aws_session_token": aws_session_token,
            "botocore_session": botocore_session,
        }

        if not is_reasoning(model) and thinking is not None:
            thinking = None
            warnings.warn(
                "You set thinking parameters for a non-reasoning models, they will be ignored",
                UserWarning,
            )

        super().__init__(
            temperature=temperature,
            max_tokens=max_tokens,
            additional_kwargs=additional_kwargs,
            timeout=timeout,
            max_retries=max_retries,
            model=model,
            callback_manager=callback_manager,
            system_prompt=system_prompt,
            system_prompt_caching=system_prompt_caching,
            tool_caching=tool_caching,
            messages_to_prompt=messages_to_prompt,
            completion_to_prompt=completion_to_prompt,
            pydantic_program_mode=pydantic_program_mode,
            output_parser=output_parser,
            profile_name=profile_name,
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            aws_session_token=aws_session_token,
            region_name=region_name,
            api_version=api_version,
            use_ssl=use_ssl,
            verify=verify,
            endpoint_url=endpoint_url,
            botocore_session=botocore_session,
            botocore_config=botocore_config,
            guardrail_identifier=guardrail_identifier,
            guardrail_version=guardrail_version,
            guardrail_stream_processing_mode=guardrail_stream_processing_mode,
            application_inference_profile_arn=application_inference_profile_arn,
            trace=trace,
            thinking=thinking,
            supports_forced_tool_calls=supports_forced_tool_calls,
        )

        self._config = None

        self._boto_client_kwargs = {
            "api_version": api_version,
            "use_ssl": use_ssl,
            "verify": verify,
            "endpoint_url": endpoint_url,
        }

        try:
            import boto3
            import aioboto3
            from botocore.config import Config

            self._config = (
                Config(
                    retries={"max_attempts": max_retries, "mode": "standard"},
                    connect_timeout=timeout,
                    read_timeout=timeout,
                    user_agent_extra="x-client-framework:llama_index",
                )
                if botocore_config is None
                else botocore_config
            )
            session = boto3.Session(**session_kwargs)
            self._asession = aioboto3.Session(**session_kwargs)
        except ImportError:
            raise ImportError(
                "boto3 and/or aioboto3 package not found, install with"
                "'pip install boto3 aioboto3"
            )

        # Prior to general availability, custom boto3 wheel files were
        # distributed that used the bedrock service to invokeModel.
        # This check prevents any services still using those wheel files
        # from breaking
        if client is not None:
            self._client = client
        elif "bedrock-runtime" in session.get_available_services():
            self._client = session.client(
                "bedrock-runtime",
                config=self._config,
                **self._boto_client_kwargs,
            )
        else:
            self._client = session.client(
                "bedrock",
                config=self._config,
                **self._boto_client_kwargs,
            )

    @classmethod
    def class_name(cls) -> str:
        return "Bedrock_Converse_LLM"

    @property
    def metadata(self) -> LLMMetadata:
        return LLMMetadata(
            context_window=bedrock_modelname_to_context_size(self.model),
            num_output=self.max_tokens,
            is_chat_model=True,
            model_name=self.model,
            is_function_calling_model=is_bedrock_function_calling_model(self.model),
        )

    @property
    def _model_kwargs(self) -> Dict[str, Any]:
        base_kwargs = {
            "model": self.application_inference_profile_arn or self.model,
            "temperature": self.temperature,
            "max_tokens": self.max_tokens,
        }
        return {
            **base_kwargs,
            **self.additional_kwargs,
        }

    def _get_all_kwargs(self, **kwargs: Any) -> Dict[str, Any]:
        return {
            **self._model_kwargs,
            **kwargs,
        }

    def _get_content_and_tool_calls(
        self, response: Optional[Dict[str, Any]] = None, content: Dict[str, Any] = None
    ) -> Tuple[
        List[Union[TextBlock, ThinkingBlock]], Dict[str, Any], List[str], List[str]
    ]:
        assert response is not None or content is not None, (
            f"Either response or content must be provided. Got response: {response}, content: {content}"
        )
        assert response is None or content is None, (
            f"Only one of response or content should be provided. Got response: {response}, content: {content}"
        )
        tool_calls = []
        tool_call_ids = []
        status = []
        blocks = []
        if content is not None:
            content_list = [content]
        else:
            content_list = response["output"]["message"]["content"]

        for content_block in content_list:
            if text := content_block.get("text", None):
                blocks.append(TextBlock(text=text))
            if thinking := content_block.get("reasoningContent", None):
                blocks.append(
                    ThinkingBlock(
                        content=thinking.get("reasoningText", {}).get("text", None),
                        additional_information={
                            "signature": thinking.get("reasoningText", {}).get(
                                "signature", None
                            )
                        },
                    )
                )
            if tool_usage := content_block.get("toolUse", None):
                if "toolUseId" not in tool_usage:
                    tool_usage["toolUseId"] = content_block["toolUseId"]
                if "name" not in tool_usage:
                    tool_usage["name"] = content_block["name"]
                tool_calls.append(tool_usage)
            if tool_result := content_block.get("toolResult", None):
                for tool_result_content in tool_result["content"]:
                    if text := tool_result_content.get("text", None):
                        text_content += text
                tool_call_ids.append(tool_result_content.get("toolUseId", ""))
                status.append(tool_result.get("status", ""))

        return blocks, tool_calls, tool_call_ids, status

    @llm_chat_callback()
    def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
        # convert Llama Index messages to AWS Bedrock Converse messages
        converse_messages, system_prompt = messages_to_converse_messages(
            messages, self.model
        )
        all_kwargs = self._get_all_kwargs(**kwargs)
        if self.thinking is not None:
            all_kwargs["thinking"] = self.thinking

        # invoke LLM in AWS Bedrock Converse with retry
        response = converse_with_retry(
            client=self._client,
            messages=converse_messages,
            system_prompt=system_prompt,
            system_prompt_caching=self.system_prompt_caching,
            tool_caching=self.tool_caching,
            max_retries=self.max_retries,
            stream=False,
            guardrail_identifier=self.guardrail_identifier,
            guardrail_version=self.guardrail_version,
            trace=self.trace,
            **all_kwargs,
        )

        blocks, tool_calls, tool_call_ids, status = self._get_content_and_tool_calls(
            response
        )

        return ChatResponse(
            message=ChatMessage(
                role=MessageRole.ASSISTANT,
                blocks=blocks,
                additional_kwargs={
                    "tool_calls": tool_calls,
                    "tool_call_id": tool_call_ids,
                    "status": status,
                },
            ),
            raw=dict(response),
            additional_kwargs=self._get_response_token_counts(dict(response)),
        )

    @llm_completion_callback()
    def complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        complete_fn = chat_to_completion_decorator(self.chat)
        return complete_fn(prompt, **kwargs)

    @llm_chat_callback()
    def stream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseGen:
        # convert Llama Index messages to AWS Bedrock Converse messages
        converse_messages, system_prompt = messages_to_converse_messages(
            messages, self.model
        )
        all_kwargs = self._get_all_kwargs(**kwargs)
        if self.thinking is not None:
            all_kwargs["thinking"] = self.thinking

        # invoke LLM in AWS Bedrock Converse with retry
        response = converse_with_retry(
            client=self._client,
            messages=converse_messages,
            system_prompt=system_prompt,
            system_prompt_caching=self.system_prompt_caching,
            tool_caching=self.tool_caching,
            max_retries=self.max_retries,
            stream=True,
            guardrail_identifier=self.guardrail_identifier,
            guardrail_version=self.guardrail_version,
            guardrail_stream_processing_mode=self.guardrail_stream_processing_mode,
            trace=self.trace,
            **all_kwargs,
        )

        def gen() -> ChatResponseGen:
            content = {}
            tool_calls = []  # Track tool calls separately
            current_tool_call = None  # Track the current tool call being built
            role = MessageRole.ASSISTANT
            thinking = ""
            thinking_signature = ""

            for chunk in response["stream"]:
                if content_block_delta := chunk.get("contentBlockDelta"):
                    content_delta = content_block_delta["delta"]
                    content = join_two_dicts(content, content_delta)

                    if "reasoningContent" in content_delta:
                        thinking += content_delta.get("reasoningContent", {}).get(
                            "text", ""
                        )
                        thinking_signature += content_delta.get(
                            "reasoningContent", {}
                        ).get("signature", "")

                    # If this delta contains tool call info, update current tool call
                    if "toolUse" in content_delta:
                        tool_use_delta = content_delta["toolUse"]

                        if current_tool_call:
                            # Handle the input field specially - concatenate partial JSON strings
                            if "input" in tool_use_delta:
                                if "input" in current_tool_call:
                                    current_tool_call["input"] += tool_use_delta[
                                        "input"
                                    ]
                                else:
                                    current_tool_call["input"] = tool_use_delta["input"]

                                # Remove input from the delta to prevent it from being processed again
                                tool_use_without_input = {
                                    k: v
                                    for k, v in tool_use_delta.items()
                                    if k != "input"
                                }
                                if tool_use_without_input:
                                    current_tool_call = join_two_dicts(
                                        current_tool_call, tool_use_without_input
                                    )
                            else:
                                # For other fields, use the normal joining
                                current_tool_call = join_two_dicts(
                                    current_tool_call, tool_use_delta
                                )

                    blocks: List[Union[TextBlock, ThinkingBlock]] = [
                        TextBlock(text=content.get("text", ""))
                    ]
                    if thinking != "":
                        blocks.insert(
                            0,
                            ThinkingBlock(
                                content=thinking,
                                additional_information={
                                    "signature": thinking_signature
                                },
                            ),
                        )

                    yield ChatResponse(
                        message=ChatMessage(
                            role=role,
                            blocks=blocks,
                            additional_kwargs={
                                "tool_calls": tool_calls,
                                "tool_call_id": [
                                    tc.get("toolUseId", "") for tc in tool_calls
                                ],
                                "status": [],  # Will be populated when tool results come in
                            },
                        ),
                        delta=content_delta.get("text", ""),
                        raw=chunk,
                        additional_kwargs=self._get_response_token_counts(dict(chunk)),
                    )
                elif content_block_start := chunk.get("contentBlockStart"):
                    # New tool call starting
                    if "toolUse" in content_block_start["start"]:
                        tool_use = content_block_start["start"]["toolUse"]
                        # Start tracking a new tool call
                        current_tool_call = tool_use
                        # Add to our list of tool calls
                        tool_calls.append(current_tool_call)

                    blocks: List[Union[TextBlock, ThinkingBlock]] = [
                        TextBlock(text=content.get("text", ""))
                    ]
                    if thinking != "":
                        blocks.insert(
                            0,
                            ThinkingBlock(
                                content=thinking,
                                additional_information={
                                    "signature": thinking_signature
                                },
                            ),
                        )

                    yield ChatResponse(
                        message=ChatMessage(
                            role=role,
                            blocks=blocks,
                            additional_kwargs={
                                "tool_calls": tool_calls,
                                "tool_call_id": [
                                    tc.get("toolUseId", "") for tc in tool_calls
                                ],
                                "status": [],  # Will be populated when tool results come in
                            },
                        ),
                        raw=chunk,
                    )
                elif message_stop := chunk.get("messageStop"):
                    # Handle messageStop event - this contains the stop reason
                    # We don't yield here, just track the event
                    pass
                elif metadata := chunk.get("metadata"):
                    # Handle metadata event - this contains the final token usage
                    if usage := metadata.get("usage"):
                        # Yield a final response with correct token usage
                        blocks: List[Union[TextBlock, ThinkingBlock]] = [
                            TextBlock(text=content.get("text", ""))
                        ]
                        if thinking != "":
                            blocks.insert(
                                0,
                                ThinkingBlock(
                                    content=thinking,
                                    additional_information={
                                        "signature": thinking_signature
                                    },
                                ),
                            )

                        yield ChatResponse(
                            message=ChatMessage(
                                role=role,
                                blocks=blocks,
                                additional_kwargs={
                                    "tool_calls": tool_calls,
                                    "tool_call_id": [
                                        tc.get("toolUseId", "") for tc in tool_calls
                                    ],
                                    "status": [],
                                },
                            ),
                            delta="",
                            raw=chunk,
                            additional_kwargs=self._get_response_token_counts(metadata),
                        )

        return gen()

    @llm_completion_callback()
    def stream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseGen:
        stream_complete_fn = stream_chat_to_completion_decorator(self.stream_chat)
        return stream_complete_fn(prompt, **kwargs)

    @llm_chat_callback()
    async def achat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponse:
        # convert Llama Index messages to AWS Bedrock Converse messages
        converse_messages, system_prompt = messages_to_converse_messages(
            messages, self.model
        )
        all_kwargs = self._get_all_kwargs(**kwargs)
        if self.thinking is not None:
            all_kwargs["thinking"] = self.thinking

        # invoke LLM in AWS Bedrock Converse with retry
        response = await converse_with_retry_async(
            session=self._asession,
            config=self._config,
            messages=converse_messages,
            system_prompt=system_prompt,
            system_prompt_caching=self.system_prompt_caching,
            tool_caching=self.tool_caching,
            max_retries=self.max_retries,
            stream=False,
            guardrail_identifier=self.guardrail_identifier,
            guardrail_version=self.guardrail_version,
            guardrail_stream_processing_mode=self.guardrail_stream_processing_mode,
            trace=self.trace,
            boto_client_kwargs=self._boto_client_kwargs,
            **all_kwargs,
        )

        blocks, tool_calls, tool_call_ids, status = self._get_content_and_tool_calls(
            response
        )

        return ChatResponse(
            message=ChatMessage(
                role=MessageRole.ASSISTANT,
                blocks=blocks,
                additional_kwargs={
                    "tool_calls": tool_calls,
                    "tool_call_id": tool_call_ids,
                    "status": status,
                },
            ),
            raw=dict(response),
            additional_kwargs=self._get_response_token_counts(dict(response)),
        )

    @llm_completion_callback()
    async def acomplete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        complete_fn = achat_to_completion_decorator(self.achat)
        return await complete_fn(prompt, **kwargs)

    @llm_chat_callback()
    async def astream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseAsyncGen:
        # convert Llama Index messages to AWS Bedrock Converse messages
        converse_messages, system_prompt = messages_to_converse_messages(
            messages, self.model
        )
        all_kwargs = self._get_all_kwargs(**kwargs)
        if self.thinking is not None:
            all_kwargs["thinking"] = self.thinking

        # invoke LLM in AWS Bedrock Converse with retry
        response_gen = await converse_with_retry_async(
            session=self._asession,
            config=self._config,
            messages=converse_messages,
            system_prompt=system_prompt,
            system_prompt_caching=self.system_prompt_caching,
            tool_caching=self.tool_caching,
            max_retries=self.max_retries,
            stream=True,
            guardrail_identifier=self.guardrail_identifier,
            guardrail_version=self.guardrail_version,
            trace=self.trace,
            boto_client_kwargs=self._boto_client_kwargs,
            **all_kwargs,
        )

        async def gen() -> ChatResponseAsyncGen:
            content = {}
            tool_calls = []  # Track tool calls separately
            current_tool_call = None  # Track the current tool call being built
            role = MessageRole.ASSISTANT
            thinking = ""
            thinking_signature = ""

            async for chunk in response_gen:
                if content_block_delta := chunk.get("contentBlockDelta"):
                    content_delta = content_block_delta["delta"]
                    content = join_two_dicts(content, content_delta)

                    if "reasoningContent" in content_delta:
                        thinking += content_delta.get("reasoningContent", {}).get(
                            "text", ""
                        )
                        thinking_signature += content_delta.get(
                            "reasoningContent", {}
                        ).get("signature", "")

                    # If this delta contains tool call info, update current tool call
                    if "toolUse" in content_delta:
                        tool_use_delta = content_delta["toolUse"]

                        if current_tool_call:
                            # Handle the input field specially - concatenate partial JSON strings
                            if "input" in tool_use_delta:
                                if "input" in current_tool_call:
                                    current_tool_call["input"] += tool_use_delta[
                                        "input"
                                    ]
                                else:
                                    current_tool_call["input"] = tool_use_delta["input"]

                                # Remove input from the delta to prevent it from being processed again
                                tool_use_without_input = {
                                    k: v
                                    for k, v in tool_use_delta.items()
                                    if k != "input"
                                }
                                if tool_use_without_input:
                                    current_tool_call = join_two_dicts(
                                        current_tool_call, tool_use_without_input
                                    )
                            else:
                                # For other fields, use the normal joining
                                current_tool_call = join_two_dicts(
                                    current_tool_call, tool_use_delta
                                )
                    blocks: List[Union[TextBlock, ThinkingBlock]] = [
                        TextBlock(text=content.get("text", ""))
                    ]
                    if thinking != "":
                        blocks.insert(
                            0,
                            ThinkingBlock(
                                content=thinking,
                                additional_information={
                                    "signature": thinking_signature
                                },
                            ),
                        )

                    yield ChatResponse(
                        message=ChatMessage(
                            role=role,
                            blocks=blocks,
                            additional_kwargs={
                                "tool_calls": tool_calls,
                                "tool_call_id": [
                                    tc.get("toolUseId", "") for tc in tool_calls
                                ],
                                "status": [],  # Will be populated when tool results come in
                            },
                        ),
                        delta=content_delta.get("text", ""),
                        raw=chunk,
                        additional_kwargs=self._get_response_token_counts(dict(chunk)),
                    )
                elif content_block_start := chunk.get("contentBlockStart"):
                    # New tool call starting
                    if "toolUse" in content_block_start["start"]:
                        tool_use = content_block_start["start"]["toolUse"]
                        # Start tracking a new tool call
                        current_tool_call = tool_use
                        # Add to our list of tool calls
                        tool_calls.append(current_tool_call)

                    blocks: List[Union[TextBlock, ThinkingBlock]] = [
                        TextBlock(text=content.get("text", ""))
                    ]
                    if thinking != "":
                        blocks.insert(
                            0,
                            ThinkingBlock(
                                content=thinking,
                                additional_information={
                                    "signature": thinking_signature
                                },
                            ),
                        )

                    yield ChatResponse(
                        message=ChatMessage(
                            role=role,
                            blocks=blocks,
                            additional_kwargs={
                                "tool_calls": tool_calls,
                                "tool_call_id": [
                                    tc.get("toolUseId", "") for tc in tool_calls
                                ],
                                "status": [],  # Will be populated when tool results come in
                            },
                        ),
                        raw=chunk,
                    )
                elif chunk.get("messageStop"):
                    # Handle messageStop event - this contains the stop reason
                    # We don't yield here, just track the event
                    pass
                elif metadata := chunk.get("metadata"):
                    # Handle metadata event - this contains the final token usage
                    if usage := metadata.get("usage"):
                        # Yield a final response with correct token usage
                        blocks: List[Union[TextBlock, ThinkingBlock]] = [
                            TextBlock(text=content.get("text", ""))
                        ]
                        if thinking != "":
                            blocks.insert(
                                0,
                                ThinkingBlock(
                                    content=thinking,
                                    additional_information={
                                        "signature": thinking_signature
                                    },
                                ),
                            )

                        yield ChatResponse(
                            message=ChatMessage(
                                role=role,
                                blocks=blocks,
                                additional_kwargs={
                                    "tool_calls": tool_calls,
                                    "tool_call_id": [
                                        tc.get("toolUseId", "") for tc in tool_calls
                                    ],
                                    "status": [],
                                },
                            ),
                            delta="",
                            raw=chunk,
                            additional_kwargs=self._get_response_token_counts(metadata),
                        )

        return gen()

    @llm_completion_callback()
    async def astream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseAsyncGen:
        astream_complete_fn = astream_chat_to_completion_decorator(self.astream_chat)
        return await astream_complete_fn(prompt, **kwargs)

    def _prepare_chat_with_tools(
        self,
        tools: List["BaseTool"],
        user_msg: Optional[Union[str, ChatMessage]] = None,
        chat_history: Optional[List[ChatMessage]] = None,
        verbose: bool = False,
        allow_parallel_tool_calls: bool = False,
        tool_required: bool = False,
        tool_caching: bool = False,
        tool_choice: Optional[dict] = None,
        **kwargs: Any,
    ) -> Dict[str, Any]:
        """Prepare the arguments needed to let the LLM chat with tools."""
        chat_history = chat_history or []

        if isinstance(user_msg, str):
            user_msg = ChatMessage(role=MessageRole.USER, content=user_msg)
            chat_history.append(user_msg)
        elif isinstance(user_msg, ChatMessage):
            chat_history.append(user_msg)

        # convert Llama Index tools to AWS Bedrock Converse tools
        tool_config = tools_to_converse_tools(
            tools,
            tool_choice=tool_choice,
            tool_required=tool_required,
            tool_caching=tool_caching,
            supports_forced_tool_calls=self.supports_forced_tool_calls,
        )

        return {
            "messages": chat_history,
            "tools": tool_config,
            **kwargs,
        }

    def _validate_chat_with_tools_response(
        self,
        response: ChatResponse,
        tools: List["BaseTool"],
        allow_parallel_tool_calls: bool = False,
        **kwargs: Any,
    ) -> ChatResponse:
        """Validate the response from chat_with_tools."""
        if not allow_parallel_tool_calls:
            force_single_tool_call(response)

        return response

    def get_tool_calls_from_response(
        self,
        response: "ChatResponse",
        error_on_no_tool_call: bool = True,
        **kwargs: Any,
    ) -> List[ToolSelection]:
        """Predict and call the tool."""
        tool_calls = response.message.additional_kwargs.get("tool_calls", [])

        if len(tool_calls) < 1:
            if error_on_no_tool_call:
                raise ValueError(
                    f"Expected at least one tool call, but got {len(tool_calls)} tool calls."
                )
            else:
                return []

        tool_selections = []
        for tool_call in tool_calls:
            if "toolUseId" not in tool_call or "name" not in tool_call:
                raise ValueError("Invalid tool call.")

            # handle empty inputs
            argument_dict = {}
            if "input" in tool_call and isinstance(tool_call["input"], str):
                # TODO parse_partial_json is not perfect
                try:
                    argument_dict = parse_partial_json(tool_call["input"])
                except ValueError:
                    argument_dict = {}
            elif "input" in tool_call and isinstance(tool_call["input"], dict):
                argument_dict = tool_call["input"]
            else:
                continue

            tool_selections.append(
                ToolSelection(
                    tool_id=tool_call["toolUseId"],
                    tool_name=tool_call["name"],
                    tool_kwargs=argument_dict,
                )
            )

        return tool_selections

    def _get_response_token_counts(
        self, response: Optional[Dict[str, Any]] = None
    ) -> dict:
        """Get the token usage reported by the response."""
        if not response or not isinstance(response, dict):
            return {}

        usage = response.get("usage", {})
        if not usage:
            return {}

        # Convert Bedrock's token count format to match OpenAI's format
        # Cache token formats respecting Anthropic format
        return {
            "prompt_tokens": usage.get("inputTokens", 0),
            "completion_tokens": usage.get("outputTokens", 0),
            "total_tokens": usage.get("totalTokens", 0),
            "cache_read_input_tokens": usage.get("cacheReadInputTokens", 0),
            "cache_creation_input_tokens": usage.get("cacheWriteInputTokens", 0),
        }

get_tool_calls_from_response #

get_tool_calls_from_response(response: ChatResponse, error_on_no_tool_call: bool = True, **kwargs: Any) -> List[ToolSelection]

Predict and call the tool.

Source code in llama_index/llms/bedrock_converse/base.py
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
def get_tool_calls_from_response(
    self,
    response: "ChatResponse",
    error_on_no_tool_call: bool = True,
    **kwargs: Any,
) -> List[ToolSelection]:
    """Predict and call the tool."""
    tool_calls = response.message.additional_kwargs.get("tool_calls", [])

    if len(tool_calls) < 1:
        if error_on_no_tool_call:
            raise ValueError(
                f"Expected at least one tool call, but got {len(tool_calls)} tool calls."
            )
        else:
            return []

    tool_selections = []
    for tool_call in tool_calls:
        if "toolUseId" not in tool_call or "name" not in tool_call:
            raise ValueError("Invalid tool call.")

        # handle empty inputs
        argument_dict = {}
        if "input" in tool_call and isinstance(tool_call["input"], str):
            # TODO parse_partial_json is not perfect
            try:
                argument_dict = parse_partial_json(tool_call["input"])
            except ValueError:
                argument_dict = {}
        elif "input" in tool_call and isinstance(tool_call["input"], dict):
            argument_dict = tool_call["input"]
        else:
            continue

        tool_selections.append(
            ToolSelection(
                tool_id=tool_call["toolUseId"],
                tool_name=tool_call["name"],
                tool_kwargs=argument_dict,
            )
        )

    return tool_selections

options: members: - BedrockConverse