Resume screener
ResumeScreenerPack
Bases: BaseLlamaPack
Source code in llama_index/packs/resume_screener/base.py
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82 | class ResumeScreenerPack(BaseLlamaPack):
def __init__(
self, job_description: str, criteria: List[str], llm: Optional[LLM] = None
) -> None:
self.reader = PDFReader()
llm = llm or OpenAI(model="gpt-4")
Settings.llm = llm
self.synthesizer = TreeSummarize(output_cls=ResumeScreenerDecision)
criteria_str = _format_criteria_str(criteria)
self.query = QUERY_TEMPLATE.format(
job_description=job_description, criteria_str=criteria_str
)
def get_modules(self) -> Dict[str, Any]:
"""Get modules."""
return {"reader": self.reader, "synthesizer": self.synthesizer}
def run(self, resume_path: str, *args: Any, **kwargs: Any) -> Any:
"""Run pack."""
docs = self.reader.load_data(Path(resume_path))
output = self.synthesizer.synthesize(
query=self.query,
nodes=[NodeWithScore(node=doc, score=1.0) for doc in docs],
)
return output.response
|
get_modules
get_modules() -> Dict[str, Any]
Get modules.
Source code in llama_index/packs/resume_screener/base.py
| def get_modules(self) -> Dict[str, Any]:
"""Get modules."""
return {"reader": self.reader, "synthesizer": self.synthesizer}
|
run
run(resume_path: str, *args: Any, **kwargs: Any) -> Any
Run pack.
Source code in llama_index/packs/resume_screener/base.py
| def run(self, resume_path: str, *args: Any, **kwargs: Any) -> Any:
"""Run pack."""
docs = self.reader.load_data(Path(resume_path))
output = self.synthesizer.synthesize(
query=self.query,
nodes=[NodeWithScore(node=doc, score=1.0) for doc in docs],
)
return output.response
|
options:
members: - ResumeScreenerPack