172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291 | class SelfRAGQueryEngine(CustomQueryEngine):
"""Simple short form self RAG query engine."""
llm: Any = Field(default=None, description="llm")
retriever: BaseRetriever = Field(default=None, description="retriever")
generate_kwargs: Dict = Field(default=None, description="llm generation arguments")
verbose: bool = Field(default=True, description="Verbose.")
def __init__(
self,
model_path: str,
retriever: BaseRetriever,
verbose: bool = False,
model_kwargs: Dict = None,
generate_kwargs: Dict = None,
**kwargs: Any,
) -> None:
"""Init params."""
super().__init__(verbose=verbose, **kwargs)
model_kwargs = model_kwargs or _MODEL_KWARGS
self.generate_kwargs = generate_kwargs or _GENERATE_KWARGS
try:
from llama_cpp import Llama
except ImportError:
raise ImportError(_IMPORT_ERROR_MSG)
self.llm = Llama(model_path=model_path, verbose=verbose, **model_kwargs)
self.retriever = retriever
def _run_critic(self, paragraphs: List[str]) -> CriticOutput:
"""
Run Critic component, the llm will generate responses based on the paragraphs and then evaluate them.
Args:
paragraphs (List[str]): List of paragraphs to evaluate
Returns:
CriticOutput: Paragraphs final score, LLM predictions and source nodes
"""
paragraphs_final_score = {}
llm_response_text = {}
source_nodes = []
for p_idx, paragraph in enumerate(paragraphs):
pred = self.llm(paragraph, **self.generate_kwargs)
# Cache llm answer
llm_response_text[p_idx] = pred["choices"][0]["text"]
logprobs = pred["choices"][0]["logprobs"]
pred_log_probs = logprobs["top_logprobs"]
# Compute isRel score, on the first predicted token
isRel_score = _relevance_score(pred_log_probs[0])
# Compute isSup score
isSup_score = _is_supported_score(logprobs["tokens"], pred_log_probs)
# Compute isUse score
isUse_score = _is_useful_score(logprobs["tokens"], pred_log_probs)
paragraphs_final_score[p_idx] = (
isRel_score + isSup_score + 0.5 * isUse_score
)
# Add the paragraph as source node with its relevance score
source_nodes.append(
NodeWithScore(
node=TextNode(text=paragraph, id_=str(p_idx)),
score=isRel_score,
)
)
if self.verbose:
print_text(
f"Input: {paragraph}\nPrediction: {llm_response_text[p_idx]}\nScore: {paragraphs_final_score[p_idx]}\n",
color="blue",
)
print_text(
f"{p_idx + 1}/{len(paragraphs)} paragraphs done\n\n", color="blue"
)
return CriticOutput(llm_response_text, paragraphs_final_score, source_nodes)
def custom_query(self, query_str: str) -> Response:
"""Run self-RAG."""
response = self.llm(prompt=_format_prompt(query_str), **_GENERATE_KWARGS)
answer = response["choices"][0]["text"]
source_nodes = []
if "[Retrieval]" in answer:
if self.verbose:
print_text("Retrieval required\n", color="blue")
documents = self.retriever.retrieve(query_str)
if self.verbose:
print_text(f"Received: {len(documents)} documents\n", color="blue")
paragraphs = [
_format_prompt(query_str, document.node.text) for document in documents
]
if self.verbose:
print_text("Start evaluation\n", color="blue")
critic_output = self._run_critic(paragraphs)
paragraphs_final_score = critic_output.paragraphs_final_score
llm_response_per_paragraph = critic_output.llm_response_per_paragraph
source_nodes = critic_output.source_nodes
if self.verbose:
print_text("End evaluation\n", color="blue")
best_paragraph_id = max(
paragraphs_final_score, key=paragraphs_final_score.get
)
answer = llm_response_per_paragraph[best_paragraph_id]
if self.verbose:
print_text(f"Selected the best answer: {answer}\n", color="blue")
answer = _postprocess_answer(answer)
if self.verbose:
print_text(f"Final answer: {answer}\n", color="green")
return Response(response=str(answer), source_nodes=source_nodes)
|