Cogniswitch
BaseQueryEngine #
Bases: PromptMixin, DispatcherSpanMixin
Base query engine.
Source code in llama_index/core/base/base_query_engine.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | |
NLSQLTableQueryEngine #
Bases: BaseSQLTableQueryEngine
Natural language SQL Table query engine.
Read NLStructStoreQueryEngine's docstring for more info on NL SQL.
NOTE: Any Text-to-SQL application should be aware that executing arbitrary SQL queries can be a security risk. It is recommended to take precautions as needed, such as using restricted roles, read-only databases, sandboxing, etc.
Source code in llama_index/core/indices/struct_store/sql_query.py
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 | |
PGVectorSQLQueryEngine #
Bases: BaseSQLTableQueryEngine
PGvector SQL query engine.
A modified version of the normal text-to-SQL query engine because we can infer embedding vectors in the sql query.
NOTE: this is a beta feature
NOTE: Any Text-to-SQL application should be aware that executing arbitrary SQL queries can be a security risk. It is recommended to take precautions as needed, such as using restricted roles, read-only databases, sandboxing, etc.
Source code in llama_index/core/indices/struct_store/sql_query.py
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 | |
SQLTableRetrieverQueryEngine #
Bases: BaseSQLTableQueryEngine
SQL Table retriever query engine.
Source code in llama_index/core/indices/struct_store/sql_query.py
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 | |
CitationQueryEngine #
Bases: BaseQueryEngine
Citation query engine.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
retriever
|
BaseRetriever
|
A retriever object. |
required |
response_synthesizer
|
Optional[BaseSynthesizer]
|
A BaseSynthesizer object. |
None
|
citation_chunk_size
|
int
|
Size of citation chunks, default=512. Useful for controlling granularity of sources. |
DEFAULT_CITATION_CHUNK_SIZE
|
citation_chunk_overlap
|
int
|
Overlap of citation nodes, default=20. |
DEFAULT_CITATION_CHUNK_OVERLAP
|
text_splitter
|
Optional[TextSplitter]
|
A text splitter for creating citation source nodes. Default is a SentenceSplitter. |
None
|
callback_manager
|
Optional[CallbackManager]
|
A callback manager. |
None
|
metadata_mode
|
MetadataMode
|
A MetadataMode object that controls how metadata is included in the citation prompt. |
NONE
|
Source code in llama_index/core/query_engine/citation_query_engine.py
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 | |
from_args
classmethod
#
from_args(index: BaseGPTIndex, llm: Optional[LLM] = None, response_synthesizer: Optional[BaseSynthesizer] = None, citation_chunk_size: int = DEFAULT_CITATION_CHUNK_SIZE, citation_chunk_overlap: int = DEFAULT_CITATION_CHUNK_OVERLAP, text_splitter: Optional[TextSplitter] = None, citation_qa_template: BasePromptTemplate = CITATION_QA_TEMPLATE, citation_refine_template: BasePromptTemplate = CITATION_REFINE_TEMPLATE, retriever: Optional[BaseRetriever] = None, node_postprocessors: Optional[List[BaseNodePostprocessor]] = None, response_mode: ResponseMode = COMPACT, use_async: bool = False, streaming: bool = False, metadata_mode: MetadataMode = NONE, **kwargs: Any) -> CitationQueryEngine
Initialize a CitationQueryEngine object.".
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
index
|
BaseGPTIndex
|
(BastGPTIndex): index to use for querying |
required |
llm
|
Optional[LLM]
|
(Optional[LLM]): LLM object to use for response generation. |
None
|
citation_chunk_size
|
int
|
Size of citation chunks, default=512. Useful for controlling granularity of sources. |
DEFAULT_CITATION_CHUNK_SIZE
|
citation_chunk_overlap
|
int
|
Overlap of citation nodes, default=20. |
DEFAULT_CITATION_CHUNK_OVERLAP
|
text_splitter
|
Optional[TextSplitter]
|
A text splitter for creating citation source nodes. Default is a SentenceSplitter. |
None
|
citation_qa_template
|
BasePromptTemplate
|
Template for initial citation QA |
CITATION_QA_TEMPLATE
|
citation_refine_template
|
BasePromptTemplate
|
Template for citation refinement. |
CITATION_REFINE_TEMPLATE
|
retriever
|
BaseRetriever
|
A retriever object. |
None
|
node_postprocessors
|
Optional[List[BaseNodePostprocessor]]
|
A list of node postprocessors. |
None
|
verbose
|
bool
|
Whether to print out debug info. |
required |
response_mode
|
ResponseMode
|
A ResponseMode object. |
COMPACT
|
use_async
|
bool
|
Whether to use async. |
False
|
streaming
|
bool
|
Whether to use streaming. |
False
|
optimizer
|
Optional[BaseTokenUsageOptimizer]
|
A BaseTokenUsageOptimizer object. |
required |
Source code in llama_index/core/query_engine/citation_query_engine.py
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | |
CogniswitchQueryEngine #
Bases: BaseQueryEngine
Source code in llama_index/core/query_engine/cogniswitch_query_engine.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | |
query_knowledge #
query_knowledge(query: str) -> Response
Send a query to the Cogniswitch service and retrieve the response.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
str
|
Query to be answered. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
dict |
Response
|
Response JSON from the Cogniswitch service. |
Source code in llama_index/core/query_engine/cogniswitch_query_engine.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | |
CustomQueryEngine #
Bases: BaseModel, BaseQueryEngine
Custom query engine.
Subclasses can define additional attributes as Pydantic fields.
Subclasses must implement the custom_query method, which takes a query string
and returns either a Response object or a string as output.
They can optionally implement the acustom_query method for async support.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
callback_manager
|
CallbackManager
|
|
<llama_index.core.callbacks.base.CallbackManager object at 0x7f5a820ba0f0>
|
Source code in llama_index/core/query_engine/custom.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | |
custom_query
abstractmethod
#
custom_query(query_str: str) -> STR_OR_RESPONSE_TYPE
Run a custom query.
Source code in llama_index/core/query_engine/custom.py
64 65 66 | |
acustom_query
async
#
acustom_query(query_str: str) -> STR_OR_RESPONSE_TYPE
Run a custom query asynchronously.
Source code in llama_index/core/query_engine/custom.py
68 69 70 71 | |
FLAREInstructQueryEngine #
Bases: BaseQueryEngine
FLARE Instruct query engine.
This is the version of FLARE that uses retrieval-encouraging instructions.
NOTE: this is a beta feature. Interfaces might change, and it might not always give correct answers.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query_engine
|
BaseQueryEngine
|
query engine to use |
required |
llm
|
Optional[LLM]
|
LLM model. Defaults to None. |
None
|
instruct_prompt
|
Optional[PromptTemplate]
|
instruct prompt. Defaults to None. |
None
|
lookahead_answer_inserter
|
Optional[BaseLookaheadAnswerInserter]
|
lookahead answer inserter. Defaults to None. |
None
|
done_output_parser
|
Optional[IsDoneOutputParser]
|
done output parser. Defaults to None. |
None
|
query_task_output_parser
|
Optional[QueryTaskOutputParser]
|
query task output parser. Defaults to None. |
None
|
max_iterations
|
int
|
max iterations. Defaults to 10. |
10
|
max_lookahead_query_tasks
|
int
|
max lookahead query tasks. Defaults to 1. |
1
|
callback_manager
|
Optional[CallbackManager]
|
callback manager. Defaults to None. |
None
|
verbose
|
bool
|
give verbose outputs. Defaults to False. |
False
|
Source code in llama_index/core/query_engine/flare/base.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | |
ComposableGraphQueryEngine #
Bases: BaseQueryEngine
Composable graph query engine.
This query engine can operate over a ComposableGraph. It can take in custom query engines for its sub-indices.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
graph
|
ComposableGraph
|
A ComposableGraph object. |
required |
custom_query_engines
|
Optional[Dict[str, BaseQueryEngine]]
|
A dictionary of custom query engines. |
None
|
recursive
|
bool
|
Whether to recursively query the graph. |
True
|
**kwargs
|
Any
|
additional arguments to be passed to the underlying index query engine. |
{}
|
Source code in llama_index/core/query_engine/graph_query_engine.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | |
JSONalyzeQueryEngine #
JSONalyze query engine.
DEPRECATED: Use JSONalyzeQueryEngine from llama-index-experimental instead.
Source code in llama_index/core/query_engine/jsonalyze/jsonalyze_query_engine.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | |
KnowledgeGraphQueryEngine #
Bases: BaseQueryEngine
Knowledge graph query engine.
Query engine to call a knowledge graph.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
storage_context
|
Optional[StorageContext]
|
A storage context to use. |
None
|
refresh_schema
|
bool
|
Whether to refresh the schema. |
False
|
verbose
|
bool
|
Whether to print intermediate results. |
False
|
response_synthesizer
|
Optional[BaseSynthesizer]
|
A BaseSynthesizer object. |
None
|
**kwargs
|
Any
|
Additional keyword arguments. |
{}
|
Source code in llama_index/core/query_engine/knowledge_graph_query_engine.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 | |
generate_query #
generate_query(query_str: str) -> str
Generate a Graph Store Query from a query bundle.
Source code in llama_index/core/query_engine/knowledge_graph_query_engine.py
125 126 127 128 129 130 131 132 133 134 135 | |
agenerate_query
async
#
agenerate_query(query_str: str) -> str
Generate a Graph Store Query from a query bundle.
Source code in llama_index/core/query_engine/knowledge_graph_query_engine.py
137 138 139 140 141 142 143 144 145 146 147 | |
SimpleMultiModalQueryEngine #
Bases: BaseQueryEngine
Simple Multi Modal Retriever query engine.
Assumes that retrieved text context fits within context window of LLM, along with images.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
retriever
|
MultiModalVectorIndexRetriever
|
A retriever object. |
required |
multi_modal_llm
|
Optional[LLM]
|
An LLM model. |
None
|
text_qa_template
|
Optional[BasePromptTemplate]
|
Text QA Prompt Template. |
None
|
image_qa_template
|
Optional[BasePromptTemplate]
|
Image QA Prompt Template. |
None
|
node_postprocessors
|
Optional[List[BaseNodePostprocessor]]
|
Node Postprocessors. |
None
|
callback_manager
|
Optional[CallbackManager]
|
A callback manager. |
None
|
Source code in llama_index/core/query_engine/multi_modal.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 | |
image_query #
image_query(image_path: QueryType, prompt_str: str) -> RESPONSE_TYPE
Answer a image query.
Source code in llama_index/core/query_engine/multi_modal.py
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 | |
MultiStepQueryEngine #
Bases: BaseQueryEngine
Multi-step query engine.
This query engine can operate over an existing base query engine, along with the multi-step query transform.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query_engine
|
BaseQueryEngine
|
A BaseQueryEngine object. |
required |
query_transform
|
StepDecomposeQueryTransform
|
A StepDecomposeQueryTransform object. |
required |
response_synthesizer
|
Optional[BaseSynthesizer]
|
A BaseSynthesizer object. |
None
|
num_steps
|
Optional[int]
|
Number of steps to run the multi-step query. |
3
|
early_stopping
|
bool
|
Whether to stop early if the stop function returns True. |
True
|
index_summary
|
str
|
A string summary of the index. |
'None'
|
stop_fn
|
Optional[Callable[[Dict], bool]]
|
A stop function that takes in a dictionary of information and returns a boolean. |
None
|
Source code in llama_index/core/query_engine/multistep_query_engine.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 | |
PandasQueryEngine #
Pandas query engine.
DEPRECATED: Use PandasQueryEngine from llama-index-experimental instead.
Source code in llama_index/core/query_engine/pandas/pandas_query_engine.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | |
RetrieverQueryEngine #
Bases: BaseQueryEngine
Retriever query engine.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
retriever
|
BaseRetriever
|
A retriever object. |
required |
response_synthesizer
|
Optional[BaseSynthesizer]
|
A BaseSynthesizer object. |
None
|
callback_manager
|
Optional[CallbackManager]
|
A callback manager. |
None
|
Source code in llama_index/core/query_engine/retriever_query_engine.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | |
from_args
classmethod
#
from_args(retriever: BaseRetriever, llm: Optional[LLM] = None, response_synthesizer: Optional[BaseSynthesizer] = None, node_postprocessors: Optional[List[BaseNodePostprocessor]] = None, callback_manager: Optional[CallbackManager] = None, response_mode: ResponseMode = COMPACT, text_qa_template: Optional[BasePromptTemplate] = None, refine_template: Optional[BasePromptTemplate] = None, summary_template: Optional[BasePromptTemplate] = None, simple_template: Optional[BasePromptTemplate] = None, output_cls: Optional[Type[BaseModel]] = None, use_async: bool = False, streaming: bool = False, verbose: bool = False, **kwargs: Any) -> RetrieverQueryEngine
Initialize a RetrieverQueryEngine object.".
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
retriever
|
BaseRetriever
|
A retriever object. |
required |
llm
|
Optional[LLM]
|
An instance of an LLM. |
None
|
response_synthesizer
|
Optional[BaseSynthesizer]
|
An instance of a response synthesizer. |
None
|
node_postprocessors
|
Optional[List[BaseNodePostprocessor]]
|
A list of node postprocessors. |
None
|
callback_manager
|
Optional[CallbackManager]
|
A callback manager. |
None
|
response_mode
|
ResponseMode
|
A ResponseMode object. |
COMPACT
|
text_qa_template
|
Optional[BasePromptTemplate]
|
A BasePromptTemplate object. |
None
|
refine_template
|
Optional[BasePromptTemplate]
|
A BasePromptTemplate object. |
None
|
summary_template
|
Optional[BasePromptTemplate]
|
A BasePromptTemplate object. |
None
|
simple_template
|
Optional[BasePromptTemplate]
|
A BasePromptTemplate object. |
None
|
output_cls
|
Optional[Type[BaseModel]]
|
The pydantic model to pass to the response synthesizer. |
None
|
use_async
|
bool
|
Whether to use async. |
False
|
streaming
|
bool
|
Whether to use streaming. |
False
|
verbose
|
bool
|
Whether to print verbose output. |
False
|
Source code in llama_index/core/query_engine/retriever_query_engine.py
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | |
RetryGuidelineQueryEngine #
Bases: BaseQueryEngine
Does retry with evaluator feedback if query engine fails evaluation.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query_engine
|
BaseQueryEngine
|
A query engine object |
required |
guideline_evaluator
|
GuidelineEvaluator
|
A guideline evaluator object |
required |
resynthesize_query
|
bool
|
Whether to resynthesize query |
False
|
max_retries
|
int
|
Maximum number of retries |
3
|
callback_manager
|
Optional[CallbackManager]
|
A callback manager object |
None
|
Source code in llama_index/core/query_engine/retry_query_engine.py
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | |
RetryQueryEngine #
Bases: BaseQueryEngine
Does retry on query engine if it fails evaluation.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query_engine
|
BaseQueryEngine
|
A query engine object |
required |
evaluator
|
BaseEvaluator
|
An evaluator object |
required |
max_retries
|
int
|
Maximum number of retries |
3
|
callback_manager
|
Optional[CallbackManager]
|
A callback manager object |
None
|
Source code in llama_index/core/query_engine/retry_query_engine.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | |
RetrySourceQueryEngine #
Bases: BaseQueryEngine
Retry with different source nodes.
Source code in llama_index/core/query_engine/retry_source_query_engine.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | |
RetrieverRouterQueryEngine #
Bases: BaseQueryEngine
Retriever-based router query engine.
NOTE: this is deprecated, please use our new ToolRetrieverRouterQueryEngine
Use a retriever to select a set of Nodes. Each node will be converted into a ToolMetadata object, and also used to retrieve a query engine, to form a QueryEngineTool.
NOTE: this is a beta feature. We are figuring out the right interface between the retriever and query engine.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
selector
|
BaseSelector
|
A selector that chooses one out of many options based on each candidate's metadata and query. |
required |
query_engine_tools
|
Sequence[QueryEngineTool]
|
A sequence of candidate query engines. They must be wrapped as tools to expose metadata to the selector. |
required |
callback_manager
|
Optional[CallbackManager]
|
A callback manager. |
None
|
Source code in llama_index/core/query_engine/router_query_engine.py
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 | |
RouterQueryEngine #
Bases: BaseQueryEngine
Router query engine.
Selects one out of several candidate query engines to execute a query.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
selector
|
BaseSelector
|
A selector that chooses one out of many options based on each candidate's metadata and query. |
required |
query_engine_tools
|
Sequence[QueryEngineTool]
|
A sequence of candidate query engines. They must be wrapped as tools to expose metadata to the selector. |
required |
summarizer
|
Optional[TreeSummarize]
|
Tree summarizer to summarize sub-results. |
None
|
Source code in llama_index/core/query_engine/router_query_engine.py
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 | |
ToolRetrieverRouterQueryEngine #
Bases: BaseQueryEngine
Tool Retriever router query engine.
Selects a set of candidate query engines to execute a query.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
retriever
|
ObjectRetriever
|
A retriever that retrieves a set of query engine tools. |
required |
summarizer
|
Optional[TreeSummarize]
|
Tree summarizer to summarize sub-results. |
None
|
Source code in llama_index/core/query_engine/router_query_engine.py
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 | |
SQLJoinQueryEngine #
Bases: BaseQueryEngine
SQL Join Query Engine.
This query engine can "Join" a SQL database results with another query engine. It can decide it needs to query the SQL database or the other query engine. If it decides to query the SQL database, it will first query the SQL database, whether to augment information with retrieved results from the other query engine.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
sql_query_tool
|
QueryEngineTool
|
Query engine tool for SQL database. other_query_tool (QueryEngineTool): Other query engine tool. |
required |
selector
|
Optional[Union[LLMSingleSelector, PydanticSingleSelector]]
|
Selector to use. |
None
|
sql_join_synthesis_prompt
|
Optional[BasePromptTemplate]
|
PromptTemplate to use for SQL join synthesis. |
None
|
sql_augment_query_transform
|
Optional[SQLAugmentQueryTransform]
|
Query transform to use for SQL augmentation. |
None
|
use_sql_join_synthesis
|
bool
|
Whether to use SQL join synthesis. |
True
|
callback_manager
|
Optional[CallbackManager]
|
Callback manager to use. |
None
|
verbose
|
bool
|
Whether to print intermediate results. |
True
|
Source code in llama_index/core/query_engine/sql_join_query_engine.py
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | |
SQLAutoVectorQueryEngine #
Bases: SQLJoinQueryEngine
SQL + Vector Index Auto Retriever Query Engine.
This query engine can query both a SQL database as well as a vector database. It will first decide whether it needs to query the SQL database or vector store. If it decides to query the SQL database, it will also decide whether to augment information with retrieved results from the vector store. We use the VectorIndexAutoRetriever to retrieve results.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
sql_query_tool
|
QueryEngineTool
|
Query engine tool for SQL database. |
required |
vector_query_tool
|
QueryEngineTool
|
Query engine tool for vector database. |
required |
selector
|
Optional[Union[LLMSingleSelector, PydanticSingleSelector]]
|
Selector to use. |
None
|
sql_vector_synthesis_prompt
|
Optional[BasePromptTemplate]
|
Prompt to use for SQL vector synthesis. |
None
|
sql_augment_query_transform
|
Optional[SQLAugmentQueryTransform]
|
Query transform to use for SQL augmentation. |
None
|
use_sql_vector_synthesis
|
bool
|
Whether to use SQL vector synthesis. |
True
|
callback_manager
|
Optional[CallbackManager]
|
Callback manager to use. |
None
|
verbose
|
bool
|
Whether to print intermediate results. |
True
|
Source code in llama_index/core/query_engine/sql_vector_query_engine.py
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 | |
from_sql_and_vector_query_engines
classmethod
#
from_sql_and_vector_query_engines(sql_query_engine: Union[BaseSQLTableQueryEngine, NLSQLTableQueryEngine], sql_tool_name: str, sql_tool_description: str, vector_auto_retriever: RetrieverQueryEngine, vector_tool_name: str, vector_tool_description: str, selector: Optional[Union[LLMSingleSelector, PydanticSingleSelector]] = None, **kwargs: Any) -> SQLAutoVectorQueryEngine
From SQL and vector query engines.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
sql_query_engine
|
BaseSQLTableQueryEngine
|
SQL query engine. |
required |
vector_query_engine
|
VectorIndexAutoRetriever
|
Vector retriever. |
required |
selector
|
Optional[Union[LLMSingleSelector, PydanticSingleSelector]]
|
Selector to use. |
None
|
Source code in llama_index/core/query_engine/sql_vector_query_engine.py
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 | |
SubQuestionAnswerPair #
Bases: BaseModel
Pair of the sub question and optionally its answer (if its been answered yet).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
sub_q
|
SubQuestion
|
|
required |
answer
|
str | None
|
|
None
|
sources
|
List[NodeWithScore]
|
Built-in mutable sequence. If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified. |
<dynamic>
|
Source code in llama_index/core/query_engine/sub_question_query_engine.py
27 28 29 30 31 32 33 34 | |
SubQuestionQueryEngine #
Bases: BaseQueryEngine
Sub question query engine.
A query engine that breaks down a complex query (e.g. compare and contrast) into many sub questions and their target query engine for execution. After executing all sub questions, all responses are gathered and sent to response synthesizer to produce the final response.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
question_gen
|
BaseQuestionGenerator
|
A module for generating sub questions given a complex question and tools. |
required |
response_synthesizer
|
BaseSynthesizer
|
A response synthesizer for generating the final response |
required |
query_engine_tools
|
Sequence[QueryEngineTool]
|
Tools to answer the sub questions. |
required |
verbose
|
bool
|
whether to print intermediate questions and answers. Defaults to True |
True
|
use_async
|
bool
|
whether to execute the sub questions with asyncio. Defaults to True |
False
|
Source code in llama_index/core/query_engine/sub_question_query_engine.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | |
TransformQueryEngine #
Bases: BaseQueryEngine
Transform query engine.
Applies a query transform to a query bundle before passing it to a query engine.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query_engine
|
BaseQueryEngine
|
A query engine object. |
required |
query_transform
|
BaseQueryTransform
|
A query transform object. |
required |
transform_metadata
|
Optional[dict]
|
metadata to pass to the query transform. |
None
|
callback_manager
|
Optional[CallbackManager]
|
A callback manager. |
None
|
Source code in llama_index/core/query_engine/transform_query_engine.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 | |
options: members: - CogniswitchQueryEngine