Polars
PandasQueryEngine #
Bases: BaseQueryEngine
Pandas query engine.
Convert natural language to Pandas python code.
WARNING: This tool provides the Agent access to the eval function.
Arbitrary code execution is possible on the machine running this tool.
This tool is not recommended to be used in a production setting, and would
require heavy sandboxing or virtual machines
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
DataFrame
|
Pandas dataframe to use. |
required |
instruction_str
|
Optional[str]
|
Instruction string to use. |
None
|
instruction_parser
|
Optional[PandasInstructionParser]
|
The output parser that takes the pandas query output string and returns a string. It defaults to PandasInstructionParser and takes pandas DataFrame, and any output kwargs as parameters. eg.kwargs["max_colwidth"] = [int] is used to set the length of text that each column can display during str(df). Set it to a higher number if there is possibly long text in the dataframe. |
None
|
pandas_prompt
|
Optional[BasePromptTemplate]
|
Pandas prompt to use. |
None
|
output_kwargs
|
dict
|
Additional output processor kwargs for the PandasInstructionParser. |
None
|
head
|
int
|
Number of rows to show in the table context. |
5
|
verbose
|
bool
|
Whether to print verbose output. |
False
|
llm
|
Optional[LLM]
|
Language model to use. |
None
|
synthesize_response
|
bool
|
Whether to synthesize a response from the query results. Defaults to False. |
False
|
response_synthesis_prompt
|
Optional[BasePromptTemplate]
|
A Response Synthesis BasePromptTemplate to use for the query. Defaults to DEFAULT_RESPONSE_SYNTHESIS_PROMPT. |
None
|
Examples:
pip install llama-index-experimental
import pandas as pd
from llama_index.experimental.query_engine.pandas import PandasQueryEngine
df = pd.DataFrame(
{
"city": ["Toronto", "Tokyo", "Berlin"],
"population": [2930000, 13960000, 3645000]
}
)
query_engine = PandasQueryEngine(df=df, verbose=True)
response = query_engine.query("What is the population of Tokyo?")
Source code in llama_index/experimental/query_engine/pandas/pandas_query_engine.py
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 | |
PandasInstructionParser #
Bases: BaseOutputParser
Pandas instruction parser.
This 'output parser' takes in pandas instructions (in Python code) and executes them to return an output.
Source code in llama_index/experimental/query_engine/pandas/output_parser.py
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 | |
parse #
parse(output: str) -> Any
Parse, validate, and correct errors programmatically.
Source code in llama_index/experimental/query_engine/pandas/output_parser.py
94 95 96 | |
PolarsQueryEngine #
Bases: BaseQueryEngine
Polars query engine.
Convert natural language to Polars python code.
WARNING: This tool provides the Agent access to the eval function.
Arbitrary code execution is possible on the machine running this tool.
This tool is not recommended to be used in a production setting, and would
require heavy sandboxing or virtual machines
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
DataFrame
|
Polars dataframe to use. |
required |
instruction_str
|
Optional[str]
|
Instruction string to use. |
None
|
instruction_parser
|
Optional[PolarsInstructionParser]
|
The output parser that takes the polars query output string and returns a string. It defaults to PolarsInstructionParser and takes polars DataFrame, and any output kwargs as parameters. |
None
|
polars_prompt
|
Optional[BasePromptTemplate]
|
Polars prompt to use. |
None
|
output_kwargs
|
dict
|
Additional output processor kwargs for the PolarsInstructionParser. |
None
|
head
|
int
|
Number of rows to show in the table context. |
5
|
verbose
|
bool
|
Whether to print verbose output. |
False
|
llm
|
Optional[LLM]
|
Language model to use. |
None
|
synthesize_response
|
bool
|
Whether to synthesize a response from the query results. Defaults to False. |
False
|
response_synthesis_prompt
|
Optional[BasePromptTemplate]
|
A Response Synthesis BasePromptTemplate to use for the query. Defaults to DEFAULT_RESPONSE_SYNTHESIS_PROMPT. |
None
|
Examples:
pip install llama-index-experimental polars
import polars as pl
from llama_index.experimental.query_engine.polars import PolarsQueryEngine
df = pl.DataFrame(
{
"city": ["Toronto", "Tokyo", "Berlin"],
"population": [2930000, 13960000, 3645000]
}
)
query_engine = PolarsQueryEngine(df=df, verbose=True)
response = query_engine.query("What is the population of Tokyo?")
Source code in llama_index/experimental/query_engine/polars/polars_query_engine.py
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | |
PolarsInstructionParser #
Bases: BaseOutputParser
Polars instruction parser.
This 'output parser' takes in polars instructions (in Python code) and executes them to return an output.
Source code in llama_index/experimental/query_engine/polars/output_parser.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | |
parse #
parse(output: str) -> Any
Parse, validate, and correct errors programmatically.
Source code in llama_index/experimental/query_engine/polars/output_parser.py
104 105 106 | |
JSONalyzeQueryEngine #
Bases: BaseQueryEngine
JSON List Shape Data Analysis Query Engine.
Converts natural language statasical queries to SQL within in-mem SQLite queries.
list_of_dict(List[Dict[str, Any]]): List of dictionaries to query. jsonalyze_prompt (BasePromptTemplate): The JSONalyze prompt to use. use_async (bool): Whether to use async. analyzer (Callable): The analyzer that executes the query. sql_parser (BaseSQLParser): The SQL parser that ensures valid SQL being parsed from llm output. synthesize_response (bool): Whether to synthesize a response. response_synthesis_prompt (BasePromptTemplate): The response synthesis prompt to use. table_name (str): The table name to use. verbose (bool): Whether to print verbose output.
Source code in llama_index/experimental/query_engine/jsonalyze/jsonalyze_query_engine.py
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 | |
options: members: - PolarsQueryEngine