Faiss
FaissVectorStore #
Bases: BasePydanticVectorStore
Faiss Vector Store.
Embeddings are stored within a Faiss index.
During query time, the index uses Faiss to query for the top k embeddings, and returns the corresponding indices.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
faiss_index
|
Index
|
Faiss index instance |
required |
Examples:
pip install llama-index-vector-stores-faiss faiss-cpu
from llama_index.vector_stores.faiss import FaissVectorStore
import faiss
# create a faiss index
d = 1536 # dimension
faiss_index = faiss.IndexFlatL2(d)
vector_store = FaissVectorStore(faiss_index=faiss_index)
Source code in llama_index/vector_stores/faiss/base.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 | |
add #
add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]
Add nodes to index.
NOTE: in the Faiss vector store, we do not store text in Faiss.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
nodes
|
List[BaseNode]
|
List[BaseNode]: list of nodes with embeddings |
required |
Source code in llama_index/vector_stores/faiss/base.py
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | |
persist #
persist(persist_path: str = DEFAULT_PERSIST_PATH, fs: Optional[AbstractFileSystem] = None) -> None
Save to file.
This method saves the vector store to disk.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
persist_path
|
str
|
The save_path of the file. |
DEFAULT_PERSIST_PATH
|
Source code in llama_index/vector_stores/faiss/base.py
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | |
delete #
delete(ref_doc_id: str, **delete_kwargs: Any) -> None
Delete nodes using with ref_doc_id.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
ref_doc_id
|
str
|
The doc_id of the document to delete. |
required |
Source code in llama_index/vector_stores/faiss/base.py
173 174 175 176 177 178 179 180 181 | |
query #
query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult
Query index for top k most similar nodes.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query_embedding
|
List[float]
|
query embedding |
required |
similarity_top_k
|
int
|
top k most similar nodes |
required |
Source code in llama_index/vector_stores/faiss/base.py
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 | |
FaissMapVectorStore #
Bases: FaissVectorStore
Faiss Map Vector Store.
This wraps the base Faiss vector store and adds handling for the Faiss IDMap and IDMap2 indexes. This allows for update/delete functionality through node_id and faiss_id mapping.
Embeddings are stored within a Faiss index.
During query time, the index uses Faiss to query for the top k embeddings, and returns the corresponding indices.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
faiss_index
|
IndexIDMap or IndexIDMap2
|
Faiss id map index instance |
required |
Examples:
pip install llama-index-vector-stores-faiss faiss-cpu
from llama_index.vector_stores.faiss import FaissMapVectorStore
import faiss
# create a faiss index
d = 1536 # dimension
faiss_index = faiss.IndexFlatL2(d)
# wrap it in an IDMap or IDMap2
id_map_index = faiss.IndexIDMap2(faiss_index)
vector_store = FaissMapVectorStore(faiss_index=id_map_index)
Source code in llama_index/vector_stores/faiss/map_store.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | |
add #
add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]
Add nodes to index.
NOTE: in the Faiss vector store, we do not store text in Faiss.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
nodes
|
List[BaseNode]
|
List[BaseNode]: list of nodes with embeddings |
required |
Source code in llama_index/vector_stores/faiss/map_store.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 | |
delete #
delete(ref_doc_id: str, **delete_kwargs: Any) -> None
Delete nodes using with ref_doc_id.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
ref_doc_id
|
str
|
The doc_id of the document to delete. |
required |
Source code in llama_index/vector_stores/faiss/map_store.py
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | |
delete_nodes #
delete_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None, **delete_kwargs: Any) -> None
Delete nodes from vector store.
Source code in llama_index/vector_stores/faiss/map_store.py
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | |
query #
query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult
Query index for top k most similar nodes.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query_embedding
|
List[float]
|
query embedding |
required |
similarity_top_k
|
int
|
top k most similar nodes |
required |
Source code in llama_index/vector_stores/faiss/map_store.py
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | |
persist #
persist(persist_path: str = DEFAULT_PERSIST_PATH, fs: Optional[AbstractFileSystem] = None) -> None
Save to file.
This method saves the vector store to disk.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
persist_path
|
str
|
The save_path of the file. |
DEFAULT_PERSIST_PATH
|
Source code in llama_index/vector_stores/faiss/map_store.py
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 | |
options: members: - FaissVectorStore