Skip to content

Lindorm

LindormVectorStore #

Bases: BasePydanticVectorStore

Lindorm vector store.

Parameters:

Name Type Description Default
client LindormVectorClient

Vector index client to use. for data insertion/querying.

required

Examples:

pip install llama-index pip install opensearch-py pip install llama-index-vector-stores-lindorm

from llama_index.vector_stores.lindorm import (
    LindormVectorStore,
    LindormVectorClient,
)

# lindorm instance info
# how to obtain an lindorm search instance:
# https://alibabacloud.com/help/en/lindorm/latest/create-an-instance

# how to access your lindorm search instance:
# https://www.alibabacloud.com/help/en/lindorm/latest/view-endpoints

# run curl commands to connect to and use LindormSearch:
# https://www.alibabacloud.com/help/en/lindorm/latest/connect-and-use-the-search-engine-with-the-curl-command
host = "ld-bp******jm*******-proxy-search-pub.lindorm.aliyuncs.com"
port = 30070
username = 'your_username'
password = 'your_password'

# index to demonstrate the VectorStore impl
index_name = "lindorm_test_index"

# extension param of lindorm search, number of cluster units to query; between 1 and method.parameters.nlist.
nprobe = "a number(string type)"

# extension param of lindorm search, usually used to improve recall accuracy, but it increases performance overhead;
#   between 1 and 200; default: 10.
reorder_factor = "a number(string type)"

# LindormVectorClient encapsulates logic for a single index with vector search enabled
client = LindormVectorClient(
    host=host,
    port=port,
    username=username,
    password=password,
    index=index_name,
    dimension=1536, # match with your embedding model
    nprobe=nprobe,
    reorder_factor=reorder_factor,
    # filter_type="pre_filter/post_filter(default)"
)

# initialize vector store
vector_store = LindormVectorStore(client)
Source code in llama_index/vector_stores/lindorm/base.py
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
class LindormVectorStore(BasePydanticVectorStore):
    """
    Lindorm vector store.

    Args:
        client (LindormVectorClient): Vector index client to use.
            for data insertion/querying.

    Examples:
        `pip install llama-index`
        `pip install opensearch-py`
        `pip install llama-index-vector-stores-lindorm`


        ```python
        from llama_index.vector_stores.lindorm import (
            LindormVectorStore,
            LindormVectorClient,
        )

        # lindorm instance info
        # how to obtain an lindorm search instance:
        # https://alibabacloud.com/help/en/lindorm/latest/create-an-instance

        # how to access your lindorm search instance:
        # https://www.alibabacloud.com/help/en/lindorm/latest/view-endpoints

        # run curl commands to connect to and use LindormSearch:
        # https://www.alibabacloud.com/help/en/lindorm/latest/connect-and-use-the-search-engine-with-the-curl-command
        host = "ld-bp******jm*******-proxy-search-pub.lindorm.aliyuncs.com"
        port = 30070
        username = 'your_username'
        password = 'your_password'

        # index to demonstrate the VectorStore impl
        index_name = "lindorm_test_index"

        # extension param of lindorm search, number of cluster units to query; between 1 and method.parameters.nlist.
        nprobe = "a number(string type)"

        # extension param of lindorm search, usually used to improve recall accuracy, but it increases performance overhead;
        #   between 1 and 200; default: 10.
        reorder_factor = "a number(string type)"

        # LindormVectorClient encapsulates logic for a single index with vector search enabled
        client = LindormVectorClient(
            host=host,
            port=port,
            username=username,
            password=password,
            index=index_name,
            dimension=1536, # match with your embedding model
            nprobe=nprobe,
            reorder_factor=reorder_factor,
            # filter_type="pre_filter/post_filter(default)"
        )

        # initialize vector store
        vector_store = LindormVectorStore(client)
        ```

    """

    stores_text: bool = True
    _client: LindormVectorClient = PrivateAttr(default=None)

    def __init__(
        self,
        client: LindormVectorClient,
    ) -> None:
        """Initialize params."""
        super().__init__()
        self._client = client

    @property
    def client(self) -> Any:
        """Get client."""
        return self._client

    def add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """
        Add nodes to index.
        Synchronous wrapper,using asynchronous logic of async_add function in synchronous way.

        Args:
            nodes: List[BaseNode]: list of nodes with embeddings.

        Returns:
            List[str]: List of node_ids

        """
        return asyncio.get_event_loop().run_until_complete(
            self.async_add(nodes, **add_kwargs)
        )

    async def async_add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """
        Async add nodes to index.

        Args:
            nodes: List[BaseNode]: list of nodes with embeddings.

        Returns:
            List[str]: List of node_ids

        """
        await self._client.index_results(nodes)
        return [result.node_id for result in nodes]

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Delete nodes using a ref_doc_id.
        Synchronous wrapper,using asynchronous logic of async_add function in synchronous way.

        Args:
            ref_doc_id (str): The doc_id of the document whose nodes should be deleted.

        """
        asyncio.get_event_loop().run_until_complete(
            self.adelete(ref_doc_id, **delete_kwargs)
        )

    async def adelete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Async delete nodes using a ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document whose nodes should be deleted.

        """
        await self._client.delete_by_doc_id(ref_doc_id)

    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
        """
        Query index for top k most similar nodes.
        Synchronous wrapper,using asynchronous logic of async_add function in synchronous way.

        Args:
            query (VectorStoreQuery): Store query object.

        """
        return asyncio.get_event_loop().run_until_complete(self.aquery(query, **kwargs))

    async def aquery(
        self, query: VectorStoreQuery, **kwargs: Any
    ) -> VectorStoreQueryResult:
        """
        Async query index for top k most similar nodes.

        Args:
            query (VectorStoreQuery): Store query object.

        """
        query_embedding = cast(List[float], query.query_embedding)
        return await self._client.aquery(
            query.mode,
            query.query_str,
            query_embedding,
            query.similarity_top_k,
            filters=query.filters,
        )

client property #

client: Any

Get client.

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Add nodes to index. Synchronous wrapper,using asynchronous logic of async_add function in synchronous way.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List[BaseNode]: list of nodes with embeddings.

required

Returns:

Type Description
List[str]

List[str]: List of node_ids

Source code in llama_index/vector_stores/lindorm/base.py
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
def add(
    self,
    nodes: List[BaseNode],
    **add_kwargs: Any,
) -> List[str]:
    """
    Add nodes to index.
    Synchronous wrapper,using asynchronous logic of async_add function in synchronous way.

    Args:
        nodes: List[BaseNode]: list of nodes with embeddings.

    Returns:
        List[str]: List of node_ids

    """
    return asyncio.get_event_loop().run_until_complete(
        self.async_add(nodes, **add_kwargs)
    )

async_add async #

async_add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Async add nodes to index.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List[BaseNode]: list of nodes with embeddings.

required

Returns:

Type Description
List[str]

List[str]: List of node_ids

Source code in llama_index/vector_stores/lindorm/base.py
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
async def async_add(
    self,
    nodes: List[BaseNode],
    **add_kwargs: Any,
) -> List[str]:
    """
    Async add nodes to index.

    Args:
        nodes: List[BaseNode]: list of nodes with embeddings.

    Returns:
        List[str]: List of node_ids

    """
    await self._client.index_results(nodes)
    return [result.node_id for result in nodes]

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete nodes using a ref_doc_id. Synchronous wrapper,using asynchronous logic of async_add function in synchronous way.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document whose nodes should be deleted.

required
Source code in llama_index/vector_stores/lindorm/base.py
879
880
881
882
883
884
885
886
887
888
889
890
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Delete nodes using a ref_doc_id.
    Synchronous wrapper,using asynchronous logic of async_add function in synchronous way.

    Args:
        ref_doc_id (str): The doc_id of the document whose nodes should be deleted.

    """
    asyncio.get_event_loop().run_until_complete(
        self.adelete(ref_doc_id, **delete_kwargs)
    )

adelete async #

adelete(ref_doc_id: str, **delete_kwargs: Any) -> None

Async delete nodes using a ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document whose nodes should be deleted.

required
Source code in llama_index/vector_stores/lindorm/base.py
892
893
894
895
896
897
898
899
900
async def adelete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Async delete nodes using a ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document whose nodes should be deleted.

    """
    await self._client.delete_by_doc_id(ref_doc_id)

query #

query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Query index for top k most similar nodes. Synchronous wrapper,using asynchronous logic of async_add function in synchronous way.

Parameters:

Name Type Description Default
query VectorStoreQuery

Store query object.

required
Source code in llama_index/vector_stores/lindorm/base.py
902
903
904
905
906
907
908
909
910
911
def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
    """
    Query index for top k most similar nodes.
    Synchronous wrapper,using asynchronous logic of async_add function in synchronous way.

    Args:
        query (VectorStoreQuery): Store query object.

    """
    return asyncio.get_event_loop().run_until_complete(self.aquery(query, **kwargs))

aquery async #

aquery(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Async query index for top k most similar nodes.

Parameters:

Name Type Description Default
query VectorStoreQuery

Store query object.

required
Source code in llama_index/vector_stores/lindorm/base.py
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
async def aquery(
    self, query: VectorStoreQuery, **kwargs: Any
) -> VectorStoreQueryResult:
    """
    Async query index for top k most similar nodes.

    Args:
        query (VectorStoreQuery): Store query object.

    """
    query_embedding = cast(List[float], query.query_embedding)
    return await self._client.aquery(
        query.mode,
        query.query_str,
        query_embedding,
        query.similarity_top_k,
        filters=query.filters,
    )

LindormVectorClient #

Object encapsulating an Lindorm index that has vector search enabled.

If the index does not yet exist, it is created during init. Therefore, the underlying index is assumed to either: 1) not exist yet or 2) be created due to previous usage of this class.

Two index types are available: IVFPQ & HNSW. Default: IVFPQ.

Detailed info for these arguments can be found here: https://help.aliyun.com/document_detail/2773371.html

Parameters:

Name Type Description Default
host str

Elasticsearch compatible host of the lindorm search engine.

required
port int

Port of you lindorm instance.

required
username str

Username of your lindorm instance.

required
password str

Password of your lindorm instance.

required
index str

Name of the index.

required
dimension int

Dimension of the vector.

required

how to obtain an lindorm instance: https://alibabacloud.com/help/en/lindorm/latest/create-an-instance

how to access your lindorm instance: https://www.alibabacloud.com/help/en/lindorm/latest/view-endpoints

run curl commands to connect to and use LindormSearch: https://www.alibabacloud.com/help/en/lindorm/latest/connect-and-use-the-search-engine-with-the-curl-command

Optional Args

text_field(str): Document field the text of the document is stored in. Defaults to "content". max_chunk_bytes(int): Maximum size of a chunk in bytes; default : 1 * 1024 * 1024. os_client(OSClient): opensearch_client; default : None.

Optional Keyword Args to construct method of mapping

method_name(str): "ivfpq","hnsw"; default: "ivfpq". engine(str): "lvector"; default: "lvector". space_type(str): "l2", "cosinesimil", "innerproduct"; default: "l2" vector_field(str): Document field embeddings are stored in. default: "vector_field".

Optional Keyword Args for lindorm search extension setting

filter_type (str): filter type for lindorm search, pre_filter or post_filter; default: post_filter. nprobe (str): number of cluster units to query; between 1 and method.parameters.nlist. No default value. reorder_factor (str): reorder_factor for lindorm search; between 1 and 200; default: 10.

Optional Keyword Args for IVFPQ

m(int): Number of subspaces. Between 2 and 32768; default: 16. nlist(int): Number of cluster centersdefault. Between 2 and 1000000; default: 10000. centroids_use_hnsw(bool): Whether to use the HNSW algorithm when searching for cluster centers; default: True. centroids_hnsw_m: Between 1 and 100; default: 16. centroids_hnsw_ef_search(int): Size of the dynamic list used during k-NN searches. Higher values. lead to more accurate but slower searches; default: 100. centroids_hnsw_ef_construct(int): Size of the dynamic list used during k-NN graph creation. Higher values lead to more accurate graph but slower indexing speed; default: 100.

Optional Keyword Args for HNSW

m(int): maximum number of outgoing edges in each layer of the graph. Between 1 and 100; default: 16. ef_construction(int): Length of the dynamic list when the index is built. Between 1 and 1000; default: 100.

Source code in llama_index/vector_stores/lindorm/base.py
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
class LindormVectorClient:
    """
    Object encapsulating an Lindorm index that has vector search enabled.

    If the index does not yet exist, it is created during init.
    Therefore, the underlying index is assumed to either:
    1) not exist yet or 2) be created due to previous usage of this class.

    Two index types are available: IVFPQ & HNSW. Default: IVFPQ.

    Detailed info for these arguments can be found here:
    https://help.aliyun.com/document_detail/2773371.html

    Args:
        host (str): Elasticsearch compatible host of the lindorm search engine.
        port (int): Port of you lindorm instance.
        username (str): Username of your lindorm instance.
        password (str): Password of your lindorm instance.
        index (str): Name of the index.
        dimension (int): Dimension of the vector.

    how to obtain an lindorm instance:
    https://alibabacloud.com/help/en/lindorm/latest/create-an-instance

    how to access your lindorm instance:
    https://www.alibabacloud.com/help/en/lindorm/latest/view-endpoints

    run curl commands to connect to and use LindormSearch:
    https://www.alibabacloud.com/help/en/lindorm/latest/connect-and-use-the-search-engine-with-the-curl-command

    Optional Args:
        text_field(str): Document field the text of the document is stored in. Defaults to "content".
        max_chunk_bytes(int): Maximum size of a chunk in bytes; default : 1 * 1024 * 1024.
        os_client(OSClient): opensearch_client; default : None.

    Optional Keyword Args to construct method of mapping:
        method_name(str): "ivfpq","hnsw"; default: "ivfpq".
        engine(str): "lvector"; default: "lvector".
        space_type(str): "l2", "cosinesimil", "innerproduct"; default: "l2"
        vector_field(str): Document field embeddings are stored in. default: "vector_field".

    Optional Keyword Args for lindorm search extension setting:
        filter_type (str): filter type for lindorm search, pre_filter or post_filter; default: post_filter.
        nprobe (str): number of cluster units to query; between 1 and method.parameters.nlist.
            No default value.
        reorder_factor (str): reorder_factor for lindorm search; between 1 and 200; default: 10.

    Optional Keyword Args for IVFPQ:
        m(int): Number of subspaces. Between 2 and 32768; default: 16.
        nlist(int): Number of cluster centersdefault. Between 2 and 1000000; default: 10000.
        centroids_use_hnsw(bool): Whether to use the HNSW algorithm when searching for cluster centers; default: True.
        centroids_hnsw_m: Between 1 and 100; default: 16.
        centroids_hnsw_ef_search(int): Size of the dynamic list used during k-NN searches. Higher values.
            lead to more accurate but slower searches; default: 100.
        centroids_hnsw_ef_construct(int): Size of the dynamic list used during k-NN graph creation.
            Higher values lead to more accurate graph but slower indexing speed; default: 100.

    Optional Keyword Args for HNSW:
        m(int): maximum number of outgoing edges in each layer of the graph. Between 1 and 100; default: 16.
        ef_construction(int): Length of the dynamic list when the index is built. Between 1 and 1000; default: 100.

    """

    def __init__(
        self,
        host: str,
        port: int,
        username: str,
        password: str,
        index: str,
        dimension: int,
        text_field: str = "content",
        max_chunk_bytes: int = 1 * 1024 * 1024,
        os_client: Optional[OSClient] = None,
        **kwargs: Any,
    ):
        """Init params."""
        method_name = kwargs.get("method_name", "ivfpq")
        engine = kwargs.get("engine", "lvector")
        space_type = kwargs.get("space_type", "l2")
        vector_field = kwargs.get("vector_field", "vector_field")
        filter_type = kwargs.get("filter_type", "post_filter")
        nprobe = kwargs.get("nprobe", "1")
        reorder_factor = kwargs.get("reorder_factor", "10")

        if filter_type not in ["post_filter", "pre_filter"]:
            raise ValueError(
                f"Unsupported filter type: {filter_type}, only post_filter and pre_filter are suopported now."
            )

        # initialize parameters
        if method_name == "ivfpq":
            m = kwargs.get("m", dimension)
            nlist = kwargs.get("nlist", 10000)
            centroids_use_hnsw = kwargs.get("centroids_use_hnsw", True)
            centroids_hnsw_m = kwargs.get("centroids_hnsw_m", 16)
            centroids_hnsw_ef_construct = kwargs.get("centroids_hnsw_ef_construct", 100)
            centroids_hnsw_ef_search = kwargs.get("centroids_hnsw_ef_search", 100)
            parameters = {
                "m": m,
                "nlist": nlist,
                "centroids_use_hnsw": centroids_use_hnsw,
                "centroids_hnsw_m": centroids_hnsw_m,
                "centroids_hnsw_ef_construct": centroids_hnsw_ef_construct,
                "centroids_hnsw_ef_search": centroids_hnsw_ef_search,
            }
        elif method_name == "hnsw":
            m = kwargs.get("m", 16)
            ef_construction = kwargs.get("ef_construction", 100)
            parameters = {"m": m, "ef_construction": ef_construction}
        else:
            raise RuntimeError(f"unexpected method_name: {method_name}")

        self._vector_field = vector_field
        self._filter_type = filter_type
        self._nprobe = nprobe
        self._reorder_factor = reorder_factor

        self._host = host
        self._port = port
        self._username = username
        self._password = password
        self._dimension = dimension
        self._index = index
        self._text_field = text_field
        self._max_chunk_bytes = max_chunk_bytes

        # initialize mapping
        mapping = {
            "settings": {"index": {"number_of_shards": 4, "knn": True}},
            "mappings": {
                "_source": {"excludes": [vector_field]},
                "properties": {
                    vector_field: {
                        "type": "knn_vector",
                        "dimension": dimension,
                        "data_type": "float",
                        "method": {
                            "engine": engine,
                            "name": method_name,
                            "space_type": space_type,
                            "parameters": parameters,
                        },
                    },
                },
            },
        }

        self._os_client = os_client or self._get_async_lindorm_search_client(
            self._host, self._port, self._username, self._password, **kwargs
        )
        not_found_error = self._import_not_found_error()

        event_loop = asyncio.get_event_loop()

        try:
            event_loop.run_until_complete(
                self._os_client.indices.get(index=self._index)
            )
        except not_found_error:
            event_loop.run_until_complete(
                self._os_client.indices.create(index=self._index, body=mapping)
            )
            event_loop.run_until_complete(
                self._os_client.indices.refresh(index=self._index)
            )

    def _import_async_opensearch(self) -> Any:
        """Import OpenSearch Python SDK if available, otherwise raise error."""
        try:
            from opensearchpy import AsyncOpenSearch
        except ImportError:
            raise ImportError(IMPORT_OPENSEARCH_PY_ERROR)
        return AsyncOpenSearch

    def _import_async_bulk(self) -> Any:
        """Import bulk if available, otherwise raise error."""
        try:
            from opensearchpy.helpers import async_bulk
        except ImportError:
            raise ImportError(IMPORT_OPENSEARCH_PY_ERROR)
        return async_bulk

    def _import_not_found_error(self) -> Any:
        """Import not found error if available, otherwise raise error."""
        try:
            from opensearchpy.exceptions import NotFoundError
        except ImportError:
            raise ImportError(IMPORT_OPENSEARCH_PY_ERROR)
        return NotFoundError

    def _get_async_lindorm_search_client(
        self,
        host: str,
        port: int,
        username: str,
        password: str,
        time_out: Optional[int] = 100,
        **kwargs: Any,
    ) -> Any:
        """Get lindorm search client through `opensearchpy` base on the lindorm_search_instance, otherwise raise error."""
        try:
            opensearch = self._import_async_opensearch()
            auth = (username, password)
            client = opensearch(
                hosts=[{"host": host, "port": port}],
                http_auth=auth,
                time_out=time_out,
                **kwargs,
            )
        except ValueError as e:
            raise ValueError(
                f"Async Lindorm Search Client string provided is not in proper format. "
                f"Got error: {e} "
            )
        return client

    def _flatten_request(self, request) -> Dict:
        """Flatten metadata in request."""
        if "metadata" in request:
            for key, value in request["metadata"].items():
                request[key] = value
            del request["metadata"]
        return request

    async def _bulk_ingest_embeddings(
        self,
        client: Any,
        index_name: str,
        embeddings: List[List[float]],
        texts: Iterable[str],
        metadatas: Optional[List[dict]] = None,
        ids: Optional[List[str]] = None,
        vector_field: str = "vector_field",
        text_field: str = "content",
        mapping: Optional[Dict] = None,
        max_chunk_bytes: Optional[int] = 1 * 1024 * 1024,
    ) -> List[str]:
        """Async Bulk Ingest Embeddings into given index."""
        if not mapping:
            mapping = {}

        async_bulk = self._import_async_bulk()
        not_found_error = self._import_not_found_error()
        requests = []
        return_ids = []
        mapping = mapping

        try:
            await client.indices.get(index=index_name)
        except not_found_error:
            await client.indices.create(index=index_name, body=mapping)

        for i, text in enumerate(texts):
            metadata = metadatas[i] if metadatas else {}
            _id = ids[i] if ids else str(uuid.uuid4())
            request = {
                "_op_type": "index",
                "_index": index_name,
                vector_field: embeddings[i],
                text_field: text,
                "metadata": metadata,
                "_id": _id,
            }
            # Flatten metadata in request
            request = self._flatten_request(request)
            requests.append(request)
            return_ids.append(_id)
        await async_bulk(client, requests, max_chunk_bytes=max_chunk_bytes)
        await client.indices.refresh(index=index_name)
        return return_ids

    def _default_approximate_search_query(
        self,
        query_vector: List[float],
        k: int,
        nprobe: str,
        reorder_factor: str,
        vector_field: str = "vector_field",
    ) -> Dict:
        """
        For Approximate k-NN Search, this is the default query.

        Args:
            query_vector(List[float]): Vector embedding to query.
            k(int): Maximum number of results. default: 4.
            nprobe (str): number of cluster units to query; between 1 and method.parameters.nlist.
                No default value.
            reorder_factor (str): reorder_factor for lindorm search; between 1 and 200; default: 10.

        Optional Args:
            vector_field(str): Document field embeddings are stored in. default: "vector_field".

        Return:
            A dictionary representing the query.

        """
        return {
            "size": k,
            "query": {"knn": {vector_field: {"vector": query_vector, "k": k}}},
            "ext": {"lvector": {"nprobe": nprobe, "reorder_factor": reorder_factor}},
        }

    def _search_query_with_filter(
        self,
        query_vector: List[float],
        k: int,
        filter_type: str,
        nprobe: str,
        reorder_factor: str,
        vector_field: str = "vector_field",
        filter: Union[Dict, List, None] = None,
    ) -> Dict:
        """
        Construct search query with pre-filter or post-filter.

        Args:
            query_vector(List[float]): Vector embedding to query.
            k(int): Maximum number of results. default: 4.
            filter_type(str): filter_type for lindorm search, pre_filter and post_filter are supported;
                default: "post_filter".
            nprobe (str): number of cluster units to query; between 1 and method.parameters.nlist.
                No default value.
            reorder_factor (str): reorder_factor for lindorm search; between 1 and 200; default: 10.
            vector_field(str): Document field embeddings are stored in. default: "vector_field".
            filter(Union[Dict, List, None]): filter for lindorm search. default: None.

        Returns:
            A dictionary representing the query.

        """
        if not filter:
            filter = MATCH_ALL_QUERY
        return {
            "size": k,
            "query": {
                "knn": {
                    vector_field: {"vector": query_vector, "filter": filter, "k": k}
                }
            },
            "ext": {
                "lvector": {
                    "filter_type": filter_type,
                    "nprobe": nprobe,
                    "reorder_factor": reorder_factor,
                }
            },
        }

    def _metadatafilter_to_dict(self, filter: MetadataFilter) -> Dict:
        """
        Parse MetadataFilter into a dictionary.

        Args:
            filter (MetadataFilter): A MetadataFilter object.

        Returns:
            dict: A dictionary representing the filter.

        """
        operator = filter.operator

        range_operators = {
            FilterOperator.GTE: "gte",
            FilterOperator.LTE: "lte",
            FilterOperator.GT: "gt",
            FilterOperator.LT: "lt",
        }

        if operator in range_operators:
            filter_dict = {
                "range": {filter.key: {range_operators[operator]: filter.value}}
            }
        elif operator == FilterOperator.EQ:
            filter_dict = {"term": {filter.key: filter.value}}
        else:
            raise ValueError(f"Unsupported filter operator: {operator}")

        return filter_dict

    def _parse_filters(self, filters: Optional[MetadataFilters]) -> Any:
        """
        Parse MetadataFilters into a list of dictionaries.

        Args:
            filters (Optional[MetadataFilters]): An optional MetadataFilters object.

        Returns:
            list: A list of dictionaries. If no filters are provided, an empty list is returned.

        """
        filter_list = []
        if filters is not None:
            for filter in filters.filters:
                filter_list.append(self._metadatafilter_to_dict(filter))
        return filter_list

    def _knn_search_query(
        self,
        vector_field: str,
        query_embedding: List[float],
        k: int,
        filter_type: str,
        nprobe: str,
        reorder_factor: str,
        filters: Optional[MetadataFilters] = None,
    ) -> Dict:
        """
        Do knn search.

        If there are no filters do approx-knn search.
        If there are filters, do an exhaustive exact knn search using filters.

        Note that approximate knn search does not support metadata filting.

        Args:
            query_embedding(List[float]): Vector embedding to query.
            k(int): Maximum number of results.
            filter_type(str): filter_type for lindorm search, pre_filter and post_filter are supported;
                default: "post_filter".
            nprobe (str): number of cluster units to query; between 1 and method.parameters.nlist.
                No default value.
            reorder_factor (str): reorder_factor for lindorm search; between 1 and 200; default: 10.

        Optional Args:
            filters(Optional[MetadataFilters]): Optional filters to apply before the search.
                Supports filter-context queries documented at
                https://opensearch.org/docs/latest/query-dsl/query-filter-context/

        Returns:
            Up to k targets closest to query_embedding.

        """
        filter_list = self._parse_filters(filters)
        if not filters:
            search_query = self._default_approximate_search_query(
                query_vector=query_embedding,
                k=k,
                vector_field=vector_field,
                nprobe=nprobe,
                reorder_factor=reorder_factor,
            )
        else:
            if filters.condition == FilterCondition.AND:
                filter = {"bool": {"must": filter_list}}
            elif filters.condition == FilterCondition.OR:
                filter = {"bool": {"should": filter_list}}
            else:
                # TODO: FilterCondition can also be 'NOT', but llama_index does not support it yet.
                # https://opensearch.org/docs/latest/query-dsl/compound/bool/
                # post_filter = {"bool": {"must_not": filter_list}}
                raise ValueError(f"Unsupported filter condition: {filters.condition}")

            search_query = self._search_query_with_filter(
                query_vector=query_embedding,
                vector_field=vector_field,
                k=k,
                filter=filter,
                nprobe=nprobe,
                reorder_factor=reorder_factor,
                filter_type=filter_type,
            )

        return search_query

    def _hybrid_search_query(
        self,
        text_field: str,
        query_str: str,
        vector_field: str,
        query_embedding: List[float],
        k: int,
        filter_type: str,
        nprobe: str,
        reorder_factor: str,
        filters: Optional[MetadataFilters] = None,
    ) -> Dict:
        """
        Do hybrid search.

        Args:
            text_field(str): Document field to query.
            query_str(str): Query string.
            vector_field(str): Document field embeddings are stored in.
            query_embedding(List[float]): Vector embedding to query.
            k(int): Maximum number of results.
            filter_type(str): filter_type for lindorm search, pre_filter and post_filter are supported;
                default: "post_filter".
            nprobe (str): number of cluster units to query; between 1 and method.parameters.nlist.
                No default value.
            reorder_factor (str): reorder_factor for lindorm search; between 1 and 200; default: 10.

        Optional Args:
            filters(Optional[MetadataFilters]): Optional filters to apply before the search.
                Supports filter-context queries documented at
                https://opensearch.org/docs/latest/query-dsl/query-filter-context/

        Returns:
            Up to k targets closest to query_embedding

        """
        knn_query = self._knn_search_query(
            vector_field=vector_field,
            filter_type=filter_type,
            nprobe=nprobe,
            reorder_factor=reorder_factor,
            query_embedding=query_embedding,
            k=k,
            filters=filters,
        )
        lexical_query = self._lexical_search_query(text_field, query_str, k, filters)

        # Combine knn and lexical search query
        knn_field_query = knn_query["query"]["knn"][vector_field]
        if "filter" not in knn_field_query:
            knn_field_query["filter"] = {"bool": {"must": []}}
        elif "bool" not in knn_field_query["filter"]:
            knn_field_query["filter"]["bool"] = {"must": []}
        elif "must" not in knn_field_query["filter"]["bool"]:
            knn_field_query["filter"]["bool"]["must"] = []

        knn_query["query"]["knn"][vector_field]["filter"]["bool"]["must"].append(
            lexical_query["query"]["bool"]["must"]
        )

        return {
            "size": k,
            "query": knn_query["query"],
            "ext": {
                "lvector": {
                    "filter_type": filter_type,
                    "nprobe": nprobe,
                    "reorder_factor": reorder_factor,
                }
            },
        }

    def _lexical_search_query(
        self,
        text_field: str,
        query_str: str,
        k: int,
        filters: Optional[MetadataFilters] = None,
    ) -> Dict:
        """
        Do lexical search.

        Args:
            text_field(str): Document field to query.
            query_str(str): Query string.
            k(int): Maximum number of results.

        Optional Args:
            filters(Optional[MetadataFilters]): Optional filters to apply before the search.
                Supports filter-context queries documented at
                https://opensearch.org/docs/latest/query-dsl/query-filter-context/

        Returns:
            Up to k targets closest to query_embedding.

        """
        lexical_query = {
            "bool": {"must": {"match": {text_field: {"query": query_str}}}}
        }

        parsed_filters = self._parse_filters(filters)
        if len(parsed_filters) > 0:
            lexical_query["bool"]["filter"] = parsed_filters

        return {
            "size": k,
            "query": lexical_query,
        }

    async def index_results(self, nodes: List[BaseNode], **kwargs: Any) -> List[str]:
        """
        Store results in the index.

        Args:
            nodes (List[BaseNode]): A list of BaseNode objects.

        Returns:
            List[str]: A list of node_ids

        """
        embeddings: List[List[float]] = []
        texts: List[str] = []
        metadatas: List[dict] = []
        ids: List[str] = []
        for node in nodes:
            ids.append(node.node_id)
            embeddings.append(node.get_embedding())
            texts.append(node.get_content(metadata_mode=MetadataMode.NONE))
            metadatas.append(node_to_metadata_dict(node, remove_text=True))

        return await self._bulk_ingest_embeddings(
            self._os_client,
            self._index,
            embeddings,
            texts,
            metadatas=metadatas,
            ids=ids,
            vector_field=self._vector_field,
            text_field=self._text_field,
            mapping=None,
            max_chunk_bytes=self._max_chunk_bytes,
        )

    async def delete_by_doc_id(self, doc_id: str) -> None:
        """
        Deletes nodes corresponding to the given LlamaIndex `Document` ID.

        Args:
            doc_id (str): a LlamaIndex `Document` id.

        """
        search_query = {"query": {"term": {"doc_id.keyword": {"value": doc_id}}}}
        await self._os_client.delete_by_query(index=self._index, body=search_query)

    async def aquery(
        self,
        query_mode: VectorStoreQueryMode,
        query_str: Optional[str],
        query_embedding: List[float],
        k: int,
        filters: Optional[MetadataFilters] = None,
    ) -> VectorStoreQueryResult:
        """
        Do vector search.

        Args:
            query_mode (VectorStoreQueryMode): Query mode.
            query_str (Optional[str]): Query string.
            query_embedding (List[float]): Query embedding.
            k (int): Maximum number of results.

        Optional Args:
            filters(Optional[MetadataFilters]): Optional filters to apply before the search.
                Supports filter-context queries documented at
                https://opensearch.org/docs/latest/query-dsl/query-filter-context/

        Returns:
            VectorStoreQueryResult.

        """
        if query_mode == VectorStoreQueryMode.HYBRID:
            if query_str is None:
                raise ValueError(INVALID_HYBRID_QUERY_ERROR)
            search_query = self._hybrid_search_query(
                text_field=self._text_field,
                query_str=query_str,
                vector_field=self._vector_field,
                query_embedding=query_embedding,
                k=k,
                filters=filters,
                filter_type=self._filter_type,
                nprobe=self._nprobe,
                reorder_factor=self._reorder_factor,
            )
            params = None
        elif query_mode == VectorStoreQueryMode.TEXT_SEARCH:
            search_query = self._lexical_search_query(
                self._text_field, query_str, k, filters=filters
            )
            params = None
        else:
            search_query = self._knn_search_query(
                vector_field=self._vector_field,
                query_embedding=query_embedding,
                k=k,
                filters=filters,
                filter_type=self._filter_type,
                nprobe=self._nprobe,
                reorder_factor=self._reorder_factor,
            )
            params = None

        res = await self._os_client.search(
            index=self._index, body=search_query, _source=True, params=params
        )

        return self._to_query_result(res)

    def _to_query_result(self, res) -> VectorStoreQueryResult:
        """
        Convert Lindorm search result to VectorStoreQueryResult.

        Args:
            res(Dict): Lindorm search result.

        Returns:
            VectorStoreQueryResult.

        """
        nodes = []
        ids = []
        scores = []
        for hit in res["hits"]["hits"]:
            source = hit["_source"]
            node_id = hit["_id"]
            text = source[self._text_field]
            metadata = source.get("metadata", None)

            try:
                node = metadata_dict_to_node(metadata)
                node.text = text
            except Exception:
                # Legacy support for old nodes
                node_info = source.get("node_info")
                relationships = source.get("relationships") or {}
                start_char_idx = None
                end_char_idx = None
                if isinstance(node_info, dict):
                    start_char_idx = node_info.get("start", None)
                    end_char_idx = node_info.get("end", None)

                node = TextNode(
                    text=text,
                    metadata=metadata,
                    id_=node_id,
                    start_char_idx=start_char_idx,
                    end_char_idx=end_char_idx,
                    relationships=relationships,
                )
            ids.append(node_id)
            nodes.append(node)
            scores.append(hit["_score"])

        return VectorStoreQueryResult(nodes=nodes, ids=ids, similarities=scores)

index_results async #

index_results(nodes: List[BaseNode], **kwargs: Any) -> List[str]

Store results in the index.

Parameters:

Name Type Description Default
nodes List[BaseNode]

A list of BaseNode objects.

required

Returns:

Type Description
List[str]

List[str]: A list of node_ids

Source code in llama_index/vector_stores/lindorm/base.py
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
async def index_results(self, nodes: List[BaseNode], **kwargs: Any) -> List[str]:
    """
    Store results in the index.

    Args:
        nodes (List[BaseNode]): A list of BaseNode objects.

    Returns:
        List[str]: A list of node_ids

    """
    embeddings: List[List[float]] = []
    texts: List[str] = []
    metadatas: List[dict] = []
    ids: List[str] = []
    for node in nodes:
        ids.append(node.node_id)
        embeddings.append(node.get_embedding())
        texts.append(node.get_content(metadata_mode=MetadataMode.NONE))
        metadatas.append(node_to_metadata_dict(node, remove_text=True))

    return await self._bulk_ingest_embeddings(
        self._os_client,
        self._index,
        embeddings,
        texts,
        metadatas=metadatas,
        ids=ids,
        vector_field=self._vector_field,
        text_field=self._text_field,
        mapping=None,
        max_chunk_bytes=self._max_chunk_bytes,
    )

delete_by_doc_id async #

delete_by_doc_id(doc_id: str) -> None

Deletes nodes corresponding to the given LlamaIndex Document ID.

Parameters:

Name Type Description Default
doc_id str

a LlamaIndex Document id.

required
Source code in llama_index/vector_stores/lindorm/base.py
639
640
641
642
643
644
645
646
647
648
async def delete_by_doc_id(self, doc_id: str) -> None:
    """
    Deletes nodes corresponding to the given LlamaIndex `Document` ID.

    Args:
        doc_id (str): a LlamaIndex `Document` id.

    """
    search_query = {"query": {"term": {"doc_id.keyword": {"value": doc_id}}}}
    await self._os_client.delete_by_query(index=self._index, body=search_query)

aquery async #

aquery(query_mode: VectorStoreQueryMode, query_str: Optional[str], query_embedding: List[float], k: int, filters: Optional[MetadataFilters] = None) -> VectorStoreQueryResult

Do vector search.

Parameters:

Name Type Description Default
query_mode VectorStoreQueryMode

Query mode.

required
query_str Optional[str]

Query string.

required
query_embedding List[float]

Query embedding.

required
k int

Maximum number of results.

required
Optional Args

filters(Optional[MetadataFilters]): Optional filters to apply before the search. Supports filter-context queries documented at https://opensearch.org/docs/latest/query-dsl/query-filter-context/

Returns:

Type Description
VectorStoreQueryResult

VectorStoreQueryResult.

Source code in llama_index/vector_stores/lindorm/base.py
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
async def aquery(
    self,
    query_mode: VectorStoreQueryMode,
    query_str: Optional[str],
    query_embedding: List[float],
    k: int,
    filters: Optional[MetadataFilters] = None,
) -> VectorStoreQueryResult:
    """
    Do vector search.

    Args:
        query_mode (VectorStoreQueryMode): Query mode.
        query_str (Optional[str]): Query string.
        query_embedding (List[float]): Query embedding.
        k (int): Maximum number of results.

    Optional Args:
        filters(Optional[MetadataFilters]): Optional filters to apply before the search.
            Supports filter-context queries documented at
            https://opensearch.org/docs/latest/query-dsl/query-filter-context/

    Returns:
        VectorStoreQueryResult.

    """
    if query_mode == VectorStoreQueryMode.HYBRID:
        if query_str is None:
            raise ValueError(INVALID_HYBRID_QUERY_ERROR)
        search_query = self._hybrid_search_query(
            text_field=self._text_field,
            query_str=query_str,
            vector_field=self._vector_field,
            query_embedding=query_embedding,
            k=k,
            filters=filters,
            filter_type=self._filter_type,
            nprobe=self._nprobe,
            reorder_factor=self._reorder_factor,
        )
        params = None
    elif query_mode == VectorStoreQueryMode.TEXT_SEARCH:
        search_query = self._lexical_search_query(
            self._text_field, query_str, k, filters=filters
        )
        params = None
    else:
        search_query = self._knn_search_query(
            vector_field=self._vector_field,
            query_embedding=query_embedding,
            k=k,
            filters=filters,
            filter_type=self._filter_type,
            nprobe=self._nprobe,
            reorder_factor=self._reorder_factor,
        )
        params = None

    res = await self._os_client.search(
        index=self._index, body=search_query, _source=True, params=params
    )

    return self._to_query_result(res)

options: members: - LindormVectorStore