Lindorm
LindormVectorStore #
Bases: BasePydanticVectorStore
Lindorm vector store.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
client
|
LindormVectorClient
|
Vector index client to use. for data insertion/querying. |
required |
Examples:
pip install llama-index
pip install opensearch-py
pip install llama-index-vector-stores-lindorm
from llama_index.vector_stores.lindorm import (
LindormVectorStore,
LindormVectorClient,
)
# lindorm instance info
# how to obtain an lindorm search instance:
# https://alibabacloud.com/help/en/lindorm/latest/create-an-instance
# how to access your lindorm search instance:
# https://www.alibabacloud.com/help/en/lindorm/latest/view-endpoints
# run curl commands to connect to and use LindormSearch:
# https://www.alibabacloud.com/help/en/lindorm/latest/connect-and-use-the-search-engine-with-the-curl-command
host = "ld-bp******jm*******-proxy-search-pub.lindorm.aliyuncs.com"
port = 30070
username = 'your_username'
password = 'your_password'
# index to demonstrate the VectorStore impl
index_name = "lindorm_test_index"
# extension param of lindorm search, number of cluster units to query; between 1 and method.parameters.nlist.
nprobe = "a number(string type)"
# extension param of lindorm search, usually used to improve recall accuracy, but it increases performance overhead;
# between 1 and 200; default: 10.
reorder_factor = "a number(string type)"
# LindormVectorClient encapsulates logic for a single index with vector search enabled
client = LindormVectorClient(
host=host,
port=port,
username=username,
password=password,
index=index_name,
dimension=1536, # match with your embedding model
nprobe=nprobe,
reorder_factor=reorder_factor,
# filter_type="pre_filter/post_filter(default)"
)
# initialize vector store
vector_store = LindormVectorStore(client)
Source code in llama_index/vector_stores/lindorm/base.py
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 | |
add #
add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]
Add nodes to index. Synchronous wrapper,using asynchronous logic of async_add function in synchronous way.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
nodes
|
List[BaseNode]
|
List[BaseNode]: list of nodes with embeddings. |
required |
Returns:
| Type | Description |
|---|---|
List[str]
|
List[str]: List of node_ids |
Source code in llama_index/vector_stores/lindorm/base.py
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 | |
async_add
async
#
async_add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]
Async add nodes to index.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
nodes
|
List[BaseNode]
|
List[BaseNode]: list of nodes with embeddings. |
required |
Returns:
| Type | Description |
|---|---|
List[str]
|
List[str]: List of node_ids |
Source code in llama_index/vector_stores/lindorm/base.py
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 | |
delete #
delete(ref_doc_id: str, **delete_kwargs: Any) -> None
Delete nodes using a ref_doc_id. Synchronous wrapper,using asynchronous logic of async_add function in synchronous way.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
ref_doc_id
|
str
|
The doc_id of the document whose nodes should be deleted. |
required |
Source code in llama_index/vector_stores/lindorm/base.py
879 880 881 882 883 884 885 886 887 888 889 890 | |
adelete
async
#
adelete(ref_doc_id: str, **delete_kwargs: Any) -> None
Async delete nodes using a ref_doc_id.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
ref_doc_id
|
str
|
The doc_id of the document whose nodes should be deleted. |
required |
Source code in llama_index/vector_stores/lindorm/base.py
892 893 894 895 896 897 898 899 900 | |
query #
query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult
Query index for top k most similar nodes. Synchronous wrapper,using asynchronous logic of async_add function in synchronous way.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
VectorStoreQuery
|
Store query object. |
required |
Source code in llama_index/vector_stores/lindorm/base.py
902 903 904 905 906 907 908 909 910 911 | |
aquery
async
#
aquery(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult
Async query index for top k most similar nodes.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
VectorStoreQuery
|
Store query object. |
required |
Source code in llama_index/vector_stores/lindorm/base.py
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 | |
LindormVectorClient #
Object encapsulating an Lindorm index that has vector search enabled.
If the index does not yet exist, it is created during init. Therefore, the underlying index is assumed to either: 1) not exist yet or 2) be created due to previous usage of this class.
Two index types are available: IVFPQ & HNSW. Default: IVFPQ.
Detailed info for these arguments can be found here: https://help.aliyun.com/document_detail/2773371.html
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
host
|
str
|
Elasticsearch compatible host of the lindorm search engine. |
required |
port
|
int
|
Port of you lindorm instance. |
required |
username
|
str
|
Username of your lindorm instance. |
required |
password
|
str
|
Password of your lindorm instance. |
required |
index
|
str
|
Name of the index. |
required |
dimension
|
int
|
Dimension of the vector. |
required |
how to obtain an lindorm instance: https://alibabacloud.com/help/en/lindorm/latest/create-an-instance
how to access your lindorm instance: https://www.alibabacloud.com/help/en/lindorm/latest/view-endpoints
run curl commands to connect to and use LindormSearch: https://www.alibabacloud.com/help/en/lindorm/latest/connect-and-use-the-search-engine-with-the-curl-command
Optional Args
text_field(str): Document field the text of the document is stored in. Defaults to "content". max_chunk_bytes(int): Maximum size of a chunk in bytes; default : 1 * 1024 * 1024. os_client(OSClient): opensearch_client; default : None.
Optional Keyword Args to construct method of mapping
method_name(str): "ivfpq","hnsw"; default: "ivfpq". engine(str): "lvector"; default: "lvector". space_type(str): "l2", "cosinesimil", "innerproduct"; default: "l2" vector_field(str): Document field embeddings are stored in. default: "vector_field".
Optional Keyword Args for lindorm search extension setting
filter_type (str): filter type for lindorm search, pre_filter or post_filter; default: post_filter. nprobe (str): number of cluster units to query; between 1 and method.parameters.nlist. No default value. reorder_factor (str): reorder_factor for lindorm search; between 1 and 200; default: 10.
Optional Keyword Args for IVFPQ
m(int): Number of subspaces. Between 2 and 32768; default: 16. nlist(int): Number of cluster centersdefault. Between 2 and 1000000; default: 10000. centroids_use_hnsw(bool): Whether to use the HNSW algorithm when searching for cluster centers; default: True. centroids_hnsw_m: Between 1 and 100; default: 16. centroids_hnsw_ef_search(int): Size of the dynamic list used during k-NN searches. Higher values. lead to more accurate but slower searches; default: 100. centroids_hnsw_ef_construct(int): Size of the dynamic list used during k-NN graph creation. Higher values lead to more accurate graph but slower indexing speed; default: 100.
Optional Keyword Args for HNSW
m(int): maximum number of outgoing edges in each layer of the graph. Between 1 and 100; default: 16. ef_construction(int): Length of the dynamic list when the index is built. Between 1 and 1000; default: 100.
Source code in llama_index/vector_stores/lindorm/base.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 | |
index_results
async
#
index_results(nodes: List[BaseNode], **kwargs: Any) -> List[str]
Store results in the index.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
nodes
|
List[BaseNode]
|
A list of BaseNode objects. |
required |
Returns:
| Type | Description |
|---|---|
List[str]
|
List[str]: A list of node_ids |
Source code in llama_index/vector_stores/lindorm/base.py
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 | |
delete_by_doc_id
async
#
delete_by_doc_id(doc_id: str) -> None
Deletes nodes corresponding to the given LlamaIndex Document ID.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
doc_id
|
str
|
a LlamaIndex |
required |
Source code in llama_index/vector_stores/lindorm/base.py
639 640 641 642 643 644 645 646 647 648 | |
aquery
async
#
aquery(query_mode: VectorStoreQueryMode, query_str: Optional[str], query_embedding: List[float], k: int, filters: Optional[MetadataFilters] = None) -> VectorStoreQueryResult
Do vector search.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query_mode
|
VectorStoreQueryMode
|
Query mode. |
required |
query_str
|
Optional[str]
|
Query string. |
required |
query_embedding
|
List[float]
|
Query embedding. |
required |
k
|
int
|
Maximum number of results. |
required |
Optional Args
filters(Optional[MetadataFilters]): Optional filters to apply before the search. Supports filter-context queries documented at https://opensearch.org/docs/latest/query-dsl/query-filter-context/
Returns:
| Type | Description |
|---|---|
VectorStoreQueryResult
|
VectorStoreQueryResult. |
Source code in llama_index/vector_stores/lindorm/base.py
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 | |
options: members: - LindormVectorStore