Skip to content

Opensearch

OpensearchVectorStore #

Bases: BasePydanticVectorStore

Elasticsearch/Opensearch vector store.

Parameters:

Name Type Description Default
client OpensearchVectorClient

Vector index client to use for data insertion/querying.

required

Examples:

pip install llama-index-vector-stores-opensearch

from llama_index.vector_stores.opensearch import (
    OpensearchVectorStore,
    OpensearchVectorClient,
)

# http endpoint for your cluster (opensearch required for vector index usage)
endpoint = "http://localhost:9200"
# index to demonstrate the VectorStore impl
idx = "gpt-index-demo"

# OpensearchVectorClient stores text in this field by default
text_field = "content"
# OpensearchVectorClient stores embeddings in this field by default
embedding_field = "embedding"

# OpensearchVectorClient encapsulates logic for a
# single opensearch index with vector search enabled
client = OpensearchVectorClient(
    endpoint, idx, 1536, embedding_field=embedding_field, text_field=text_field
)

# initialize vector store
vector_store = OpensearchVectorStore(client)
Source code in llama_index/vector_stores/opensearch/base.py
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
class OpensearchVectorStore(BasePydanticVectorStore):
    """
    Elasticsearch/Opensearch vector store.

    Args:
        client (OpensearchVectorClient): Vector index client to use
            for data insertion/querying.

    Examples:
        `pip install llama-index-vector-stores-opensearch`

        ```python
        from llama_index.vector_stores.opensearch import (
            OpensearchVectorStore,
            OpensearchVectorClient,
        )

        # http endpoint for your cluster (opensearch required for vector index usage)
        endpoint = "http://localhost:9200"
        # index to demonstrate the VectorStore impl
        idx = "gpt-index-demo"

        # OpensearchVectorClient stores text in this field by default
        text_field = "content"
        # OpensearchVectorClient stores embeddings in this field by default
        embedding_field = "embedding"

        # OpensearchVectorClient encapsulates logic for a
        # single opensearch index with vector search enabled
        client = OpensearchVectorClient(
            endpoint, idx, 1536, embedding_field=embedding_field, text_field=text_field
        )

        # initialize vector store
        vector_store = OpensearchVectorStore(client)
        ```

    """

    stores_text: bool = True
    _client: OpensearchVectorClient = PrivateAttr(default=None)

    def __init__(
        self,
        client: OpensearchVectorClient,
    ) -> None:
        """Initialize params."""
        super().__init__()
        self._client = client

    @property
    def client(self) -> Any:
        """Get client."""
        return self._client

    def add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """
        Add nodes to index.

        Args:
            nodes: List[BaseNode]: list of nodes with embeddings.

        """
        self._client.index_results(nodes)
        return [result.node_id for result in nodes]

    async def async_add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """
        Async add nodes to index.

        Args:
            nodes: List[BaseNode]: list of nodes with embeddings.

        """
        await self._client.aindex_results(nodes)
        return [result.node_id for result in nodes]

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Delete nodes using with ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document to delete.

        """
        self._client.delete_by_doc_id(ref_doc_id)

    async def adelete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Async delete nodes using with ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document to delete.

        """
        await self._client.adelete_by_doc_id(ref_doc_id)

    def delete_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
        **delete_kwargs: Any,
    ) -> None:
        """
        Deletes nodes async.

        Args:
            node_ids (Optional[List[str]], optional): IDs of nodes to delete. Defaults to None.
            filters (Optional[MetadataFilters], optional): Metadata filters. Defaults to None.

        """
        self._client.delete_nodes(node_ids, filters, **delete_kwargs)

    async def adelete_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
        **delete_kwargs: Any,
    ) -> None:
        """
        Async deletes nodes async.

        Args:
            node_ids (Optional[List[str]], optional): IDs of nodes to delete. Defaults to None.
            filters (Optional[MetadataFilters], optional): Metadata filters. Defaults to None.

        """
        await self._client.adelete_nodes(node_ids, filters, **delete_kwargs)

    def clear(self) -> None:
        """Clears index."""
        self._client.clear()

    async def aclear(self) -> None:
        """Async clears index."""
        await self._client.aclear()

    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
        """
        Query index for top k most similar nodes.

        Args:
            query (VectorStoreQuery): Store query object.

        """
        query_embedding = cast(List[float], query.query_embedding)

        return self._client.query(
            query.mode,
            query.query_str,
            query_embedding,
            query.similarity_top_k,
            filters=query.filters,
        )

    async def aquery(
        self, query: VectorStoreQuery, **kwargs: Any
    ) -> VectorStoreQueryResult:
        """
        Async query index for top k most similar nodes.

        Args:
            query (VectorStoreQuery): Store query object.

        """
        query_embedding = cast(List[float], query.query_embedding)

        return await self._client.aquery(
            query.mode,
            query.query_str,
            query_embedding,
            query.similarity_top_k,
            filters=query.filters,
        )

client property #

client: Any

Get client.

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Add nodes to index.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List[BaseNode]: list of nodes with embeddings.

required
Source code in llama_index/vector_stores/opensearch/base.py
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
def add(
    self,
    nodes: List[BaseNode],
    **add_kwargs: Any,
) -> List[str]:
    """
    Add nodes to index.

    Args:
        nodes: List[BaseNode]: list of nodes with embeddings.

    """
    self._client.index_results(nodes)
    return [result.node_id for result in nodes]

async_add async #

async_add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Async add nodes to index.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List[BaseNode]: list of nodes with embeddings.

required
Source code in llama_index/vector_stores/opensearch/base.py
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
async def async_add(
    self,
    nodes: List[BaseNode],
    **add_kwargs: Any,
) -> List[str]:
    """
    Async add nodes to index.

    Args:
        nodes: List[BaseNode]: list of nodes with embeddings.

    """
    await self._client.aindex_results(nodes)
    return [result.node_id for result in nodes]

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete nodes using with ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document to delete.

required
Source code in llama_index/vector_stores/opensearch/base.py
1045
1046
1047
1048
1049
1050
1051
1052
1053
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Delete nodes using with ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document to delete.

    """
    self._client.delete_by_doc_id(ref_doc_id)

adelete async #

adelete(ref_doc_id: str, **delete_kwargs: Any) -> None

Async delete nodes using with ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document to delete.

required
Source code in llama_index/vector_stores/opensearch/base.py
1055
1056
1057
1058
1059
1060
1061
1062
1063
async def adelete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Async delete nodes using with ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document to delete.

    """
    await self._client.adelete_by_doc_id(ref_doc_id)

delete_nodes #

delete_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None, **delete_kwargs: Any) -> None

Deletes nodes async.

Parameters:

Name Type Description Default
node_ids Optional[List[str]]

IDs of nodes to delete. Defaults to None.

None
filters Optional[MetadataFilters]

Metadata filters. Defaults to None.

None
Source code in llama_index/vector_stores/opensearch/base.py
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
def delete_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
    **delete_kwargs: Any,
) -> None:
    """
    Deletes nodes async.

    Args:
        node_ids (Optional[List[str]], optional): IDs of nodes to delete. Defaults to None.
        filters (Optional[MetadataFilters], optional): Metadata filters. Defaults to None.

    """
    self._client.delete_nodes(node_ids, filters, **delete_kwargs)

adelete_nodes async #

adelete_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None, **delete_kwargs: Any) -> None

Async deletes nodes async.

Parameters:

Name Type Description Default
node_ids Optional[List[str]]

IDs of nodes to delete. Defaults to None.

None
filters Optional[MetadataFilters]

Metadata filters. Defaults to None.

None
Source code in llama_index/vector_stores/opensearch/base.py
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
async def adelete_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
    **delete_kwargs: Any,
) -> None:
    """
    Async deletes nodes async.

    Args:
        node_ids (Optional[List[str]], optional): IDs of nodes to delete. Defaults to None.
        filters (Optional[MetadataFilters], optional): Metadata filters. Defaults to None.

    """
    await self._client.adelete_nodes(node_ids, filters, **delete_kwargs)

clear #

clear() -> None

Clears index.

Source code in llama_index/vector_stores/opensearch/base.py
1097
1098
1099
def clear(self) -> None:
    """Clears index."""
    self._client.clear()

aclear async #

aclear() -> None

Async clears index.

Source code in llama_index/vector_stores/opensearch/base.py
1101
1102
1103
async def aclear(self) -> None:
    """Async clears index."""
    await self._client.aclear()

query #

query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Query index for top k most similar nodes.

Parameters:

Name Type Description Default
query VectorStoreQuery

Store query object.

required
Source code in llama_index/vector_stores/opensearch/base.py
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
    """
    Query index for top k most similar nodes.

    Args:
        query (VectorStoreQuery): Store query object.

    """
    query_embedding = cast(List[float], query.query_embedding)

    return self._client.query(
        query.mode,
        query.query_str,
        query_embedding,
        query.similarity_top_k,
        filters=query.filters,
    )

aquery async #

aquery(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Async query index for top k most similar nodes.

Parameters:

Name Type Description Default
query VectorStoreQuery

Store query object.

required
Source code in llama_index/vector_stores/opensearch/base.py
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
async def aquery(
    self, query: VectorStoreQuery, **kwargs: Any
) -> VectorStoreQueryResult:
    """
    Async query index for top k most similar nodes.

    Args:
        query (VectorStoreQuery): Store query object.

    """
    query_embedding = cast(List[float], query.query_embedding)

    return await self._client.aquery(
        query.mode,
        query.query_str,
        query_embedding,
        query.similarity_top_k,
        filters=query.filters,
    )

OpensearchVectorClient #

Object encapsulating an Opensearch index that has vector search enabled.

If the index does not yet exist, it is created during init. Therefore, the underlying index is assumed to either: 1) not exist yet or 2) be created due to previous usage of this class.

Parameters:

Name Type Description Default
endpoint str

URL (http/https) of elasticsearch endpoint

required
index str

Name of the elasticsearch index

required
dim int

Dimension of the vector

required
embedding_field str

Name of the field in the index to store embedding array in.

'embedding'
text_field str

Name of the field to grab text from

'content'
method Optional[dict]

Opensearch "method" JSON obj for configuring the KNN index. This includes engine, metric, and other config params. Defaults to: {"name": "hnsw", "space_type": "l2", "engine": "nmslib", "parameters": {"ef_construction": 256, "m": 48}}

None
settings Optional[dict]

Optional[dict]: Settings for the Opensearch index creation. Defaults to: {"index": {"knn": True, "knn.algo_param.ef_search": 100}}

None
space_type Optional[str]

space type for distance metric calculation. Defaults to: l2

'l2'
os_client Optional[Client]

Custom synchronous client (see OpenSearch from opensearch-py)

None
os_async_client Optional[Client]

Custom asynchronous client (see AsyncOpenSearch from opensearch-py)

None
excluded_source_fields Optional[List[str]]

Optional list of document "source" fields to exclude from OpenSearch responses.

None
**kwargs Any

Optional arguments passed to the OpenSearch client from opensearch-py.

{}
Source code in llama_index/vector_stores/opensearch/base.py
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
class OpensearchVectorClient:
    """
    Object encapsulating an Opensearch index that has vector search enabled.

    If the index does not yet exist, it is created during init.
    Therefore, the underlying index is assumed to either:
    1) not exist yet or 2) be created due to previous usage of this class.

    Args:
        endpoint (str): URL (http/https) of elasticsearch endpoint
        index (str): Name of the elasticsearch index
        dim (int): Dimension of the vector
        embedding_field (str): Name of the field in the index to store
            embedding array in.
        text_field (str): Name of the field to grab text from
        method (Optional[dict]): Opensearch "method" JSON obj for configuring
            the KNN index.
            This includes engine, metric, and other config params. Defaults to:
            {"name": "hnsw", "space_type": "l2", "engine": "nmslib",
            "parameters": {"ef_construction": 256, "m": 48}}
        settings: Optional[dict]: Settings for the Opensearch index creation. Defaults to:
            {"index": {"knn": True, "knn.algo_param.ef_search": 100}}
        space_type (Optional[str]): space type for distance metric calculation. Defaults to: l2
        os_client (Optional[OSClient]): Custom synchronous client (see OpenSearch from opensearch-py)
        os_async_client (Optional[OSClient]): Custom asynchronous client (see AsyncOpenSearch from opensearch-py)
        excluded_source_fields (Optional[List[str]]): Optional list of document "source" fields to exclude from OpenSearch responses.
        **kwargs: Optional arguments passed to the OpenSearch client from opensearch-py.

    """

    def __init__(
        self,
        endpoint: str,
        index: str,
        dim: int,
        embedding_field: str = "embedding",
        text_field: str = "content",
        method: Optional[dict] = None,
        settings: Optional[dict] = None,
        engine: Optional[str] = "nmslib",
        space_type: Optional[str] = "l2",
        max_chunk_bytes: int = 1 * 1024 * 1024,
        search_pipeline: Optional[str] = None,
        os_client: Optional[OSClient] = None,
        os_async_client: Optional[OSClient] = None,
        excluded_source_fields: Optional[List[str]] = None,
        **kwargs: Any,
    ):
        """Init params."""
        if method is None:
            method = {
                "name": "hnsw",
                "space_type": "l2",
                "engine": engine,
                "parameters": {"ef_construction": 256, "m": 48},
            }
        if settings is None:
            settings = {"index": {"knn": True, "knn.algo_param.ef_search": 100}}
        if embedding_field is None:
            embedding_field = "embedding"

        self._method = method
        self._embedding_field = embedding_field
        self._endpoint = endpoint
        self._dim = dim
        self._index = index
        self._text_field = text_field
        self._max_chunk_bytes = max_chunk_bytes
        self._excluded_source_fields = excluded_source_fields

        self._search_pipeline = search_pipeline
        http_auth = kwargs.get("http_auth")
        self.space_type = space_type
        self.is_aoss = self._is_aoss_enabled(http_auth=http_auth)
        # initialize mapping
        idx_conf = {
            "settings": settings,
            "mappings": {
                "properties": {
                    embedding_field: {
                        "type": "knn_vector",
                        "dimension": dim,
                        "method": method,
                    },
                }
            },
        }
        self._os_client = os_client or self._get_opensearch_client(
            self._endpoint, **kwargs
        )
        self._os_async_client = os_async_client or self._get_async_opensearch_client(
            self._endpoint, **kwargs
        )
        self._efficient_filtering_enabled = self._is_efficient_filtering_enabled()
        not_found_error = self._import_not_found_error()

        try:
            self._os_client.indices.get(index=self._index)
        except TypeError:
            # Probably using async so switch to async client
            try:
                asyncio_run(self._os_async_client.indices.get(index=self._index))
            except not_found_error:
                asyncio_run(
                    self._os_async_client.indices.create(
                        index=self._index, body=idx_conf
                    )
                )
                if self.is_aoss:
                    asyncio_run(self._os_async_client.indices.exists(index=self._index))
                else:
                    asyncio_run(
                        self._os_async_client.indices.refresh(index=self._index)
                    )
        except not_found_error:
            self._os_client.indices.create(index=self._index, body=idx_conf)
            if self.is_aoss:
                self._os_client.indices.exists(index=self._index)
            else:
                self._os_client.indices.refresh(index=self._index)

    def _import_opensearch(self) -> Any:
        """Import OpenSearch if available, otherwise raise error."""
        try:
            from opensearchpy import OpenSearch
        except ImportError:
            raise ImportError(IMPORT_OPENSEARCH_PY_ERROR)
        return OpenSearch

    def _import_async_opensearch(self) -> Any:
        """Import AsyncOpenSearch if available, otherwise raise error."""
        try:
            from opensearchpy import AsyncOpenSearch
        except ImportError:
            raise ImportError(IMPORT_ASYNC_OPENSEARCH_PY_ERROR)
        return AsyncOpenSearch

    def _import_bulk(self) -> Any:
        """Import bulk if available, otherwise raise error."""
        try:
            from opensearchpy.helpers import bulk
        except ImportError:
            raise ImportError(IMPORT_OPENSEARCH_PY_ERROR)
        return bulk

    def _import_async_bulk(self) -> Any:
        """Import async_bulk if available, otherwise raise error."""
        try:
            from opensearchpy.helpers import async_bulk
        except ImportError:
            raise ImportError(IMPORT_ASYNC_OPENSEARCH_PY_ERROR)
        return async_bulk

    def _import_not_found_error(self) -> Any:
        """Import not found error if available, otherwise raise error."""
        try:
            from opensearchpy.exceptions import NotFoundError
        except ImportError:
            raise ImportError(IMPORT_OPENSEARCH_PY_ERROR)
        return NotFoundError

    def _get_opensearch_client(self, opensearch_url: str, **kwargs: Any) -> Any:
        """Get OpenSearch client from the opensearch_url, otherwise raise error."""
        try:
            opensearch = self._import_opensearch()
            client = opensearch(opensearch_url, **kwargs)
        except ValueError as e:
            raise ImportError(
                f"OpenSearch client string provided is not in proper format. "
                f"Got error: {e} "
            )
        return client

    def _get_async_opensearch_client(self, opensearch_url: str, **kwargs: Any) -> Any:
        """Get AsyncOpenSearch client from the opensearch_url, otherwise raise error."""
        try:
            opensearch = self._import_async_opensearch()
            client = opensearch(opensearch_url, **kwargs)

        except ValueError as e:
            raise ValueError(
                f"AsyncOpenSearch client string provided is not in proper format. "
                f"Got error: {e} "
            )
        return client

    def _get_opensearch_version(self) -> str:
        info = self._os_client.info()
        return info["version"]["number"]

    def _bulk_ingest_embeddings(
        self,
        client: Any,
        index_name: str,
        embeddings: List[List[float]],
        texts: Iterable[str],
        metadatas: Optional[List[dict]] = None,
        ids: Optional[List[str]] = None,
        vector_field: str = "embedding",
        text_field: str = "content",
        mapping: Optional[Dict] = None,
        max_chunk_bytes: Optional[int] = 1 * 1024 * 1024,
        is_aoss: bool = False,
    ) -> List[str]:
        """Bulk Ingest Embeddings into given index."""
        if not mapping:
            mapping = {}

        bulk = self._import_bulk()
        not_found_error = self._import_not_found_error()
        requests = []
        return_ids = []

        try:
            client.indices.get(index=index_name)
        except not_found_error:
            client.indices.create(index=index_name, body=mapping)

        for i, text in enumerate(texts):
            metadata = metadatas[i] if metadatas else {}
            _id = ids[i] if ids else str(uuid.uuid4())
            request = {
                "_op_type": "index",
                "_index": index_name,
                vector_field: embeddings[i],
                text_field: text,
                "metadata": metadata,
            }
            if is_aoss:
                request["id"] = _id
            else:
                request["_id"] = _id
            requests.append(request)
            return_ids.append(_id)

        bulk(client, requests, max_chunk_bytes=max_chunk_bytes)
        if not is_aoss:
            client.indices.refresh(index=index_name)

        return return_ids

    async def _abulk_ingest_embeddings(
        self,
        client: Any,
        index_name: str,
        embeddings: List[List[float]],
        texts: Iterable[str],
        metadatas: Optional[List[dict]] = None,
        ids: Optional[List[str]] = None,
        vector_field: str = "embedding",
        text_field: str = "content",
        mapping: Optional[Dict] = None,
        max_chunk_bytes: Optional[int] = 1 * 1024 * 1024,
        is_aoss: bool = False,
    ) -> List[str]:
        """Async Bulk Ingest Embeddings into given index."""
        if not mapping:
            mapping = {}

        async_bulk = self._import_async_bulk()
        not_found_error = self._import_not_found_error()
        requests = []
        return_ids = []

        try:
            await client.indices.get(index=index_name)
        except not_found_error:
            await client.indices.create(index=index_name, body=mapping)

        for i, text in enumerate(texts):
            metadata = metadatas[i] if metadatas else {}
            _id = ids[i] if ids else str(uuid.uuid4())
            request = {
                "_op_type": "index",
                "_index": index_name,
                vector_field: embeddings[i],
                text_field: text,
                "metadata": metadata,
            }
            if is_aoss:
                request["id"] = _id
            else:
                request["_id"] = _id
            requests.append(request)
            return_ids.append(_id)

        await async_bulk(client, requests, max_chunk_bytes=max_chunk_bytes)
        if not is_aoss:
            await client.indices.refresh(index=index_name)

        return return_ids

    def _default_approximate_search_query(
        self,
        query_vector: List[float],
        k: int = 4,
        filters: Optional[Union[Dict, List]] = None,
        vector_field: str = "embedding",
        excluded_source_fields: Optional[List[str]] = None,
    ) -> Dict:
        """For Approximate k-NN Search, this is the default query."""
        query = {
            "size": k,
            "query": {
                "knn": {
                    vector_field: {
                        "vector": query_vector,
                        "k": k,
                    }
                }
            },
        }

        if filters:
            # filter key must be added only when filtering to avoid "filter doesn't support values of type: START_ARRAY" exception
            query["query"]["knn"][vector_field]["filter"] = filters
        if excluded_source_fields:
            query["_source"] = {"exclude": excluded_source_fields}
        return query

    def _is_text_field(self, value: Any) -> bool:
        """
        Check if value is a string and keyword filtering needs to be performed.

        Not applied to datetime strings.
        """
        if isinstance(value, str):
            try:
                datetime.fromisoformat(value)
                return False
            except ValueError as e:
                return True
        else:
            return False

    def _parse_filter(self, filter: MetadataFilter) -> dict:
        """
        Parse a single MetadataFilter to equivalent OpenSearch expression.

        As Opensearch does not differentiate between scalar/array keyword fields, IN and ANY are equivalent.
        """
        key = f"metadata.{filter.key}"
        op = filter.operator

        equality_postfix = ".keyword" if self._is_text_field(value=filter.value) else ""

        if op == FilterOperator.EQ:
            return {"term": {f"{key}{equality_postfix}": filter.value}}
        elif op in [
            FilterOperator.GT,
            FilterOperator.GTE,
            FilterOperator.LT,
            FilterOperator.LTE,
        ]:
            return {"range": {key: {filter.operator.name.lower(): filter.value}}}
        elif op == FilterOperator.NE:
            return {
                "bool": {
                    "must_not": {"term": {f"{key}{equality_postfix}": filter.value}}
                }
            }
        elif op in [FilterOperator.IN, FilterOperator.ANY]:
            if isinstance(filter.value, list) and all(
                self._is_text_field(val) for val in filter.value
            ):
                return {"terms": {f"{key}.keyword": filter.value}}
            else:
                return {"terms": {key: filter.value}}
        elif op == FilterOperator.NIN:
            return {"bool": {"must_not": {"terms": {key: filter.value}}}}
        elif op == FilterOperator.ALL:
            return {
                "terms_set": {
                    key: {
                        "terms": filter.value,
                        "minimum_should_match_script": {"source": "params.num_terms"},
                    }
                }
            }
        elif op == FilterOperator.TEXT_MATCH:
            return {"match": {key: {"query": filter.value, "fuzziness": "AUTO"}}}
        elif op == FilterOperator.CONTAINS:
            return {"wildcard": {key: f"*{filter.value}*"}}
        elif op == FilterOperator.IS_EMPTY:
            return {"bool": {"must_not": {"exists": {"field": key}}}}
        else:
            raise ValueError(f"Unsupported filter operator: {filter.operator}")

    def _parse_filters_recursively(self, filters: MetadataFilters) -> dict:
        """Parse (possibly nested) MetadataFilters to equivalent OpenSearch expression."""
        condition_map = {FilterCondition.AND: "must", FilterCondition.OR: "should"}

        bool_clause = condition_map[filters.condition]
        bool_query: dict[str, dict[str, list[dict]]] = {"bool": {bool_clause: []}}

        for filter_item in filters.filters:
            if isinstance(filter_item, MetadataFilter):
                bool_query["bool"][bool_clause].append(self._parse_filter(filter_item))
            elif isinstance(filter_item, MetadataFilters):
                bool_query["bool"][bool_clause].append(
                    self._parse_filters_recursively(filter_item)
                )
            else:
                raise ValueError(f"Unsupported filter type: {type(filter_item)}")

        return bool_query

    def _parse_filters(self, filters: Optional[MetadataFilters]) -> List[dict]:
        """Parse MetadataFilters to equivalent OpenSearch expression."""
        if filters is None:
            return []
        return [self._parse_filters_recursively(filters=filters)]

    def _knn_search_query(
        self,
        embedding_field: str,
        query_embedding: List[float],
        k: int,
        filters: Optional[MetadataFilters] = None,
        search_method="approximate",
        excluded_source_fields: Optional[List[str]] = None,
    ) -> Dict:
        """
        Perform a k-Nearest Neighbors (kNN) search.

        If the search method is "approximate" and the engine is "lucene" or "faiss", use efficient kNN filtering.
        Otherwise, perform an exhaustive exact kNN search using "painless scripting" if the version of
        OpenSearch supports it. If the OpenSearch version does not support it, use scoring script search.

        Note:
            - AWS OpenSearch Serverless does not support the painless scripting functionality at this time according to AWS.
            - Approximate kNN search does not support pre-filtering.

        Args:
            query_embedding (List[float]): Vector embedding to query.
            k (int): Maximum number of results.
            filters (Optional[MetadataFilters]): Optional filters to apply for the search.
                Supports filter-context queries documented at
                https://opensearch.org/docs/latest/query-dsl/query-filter-context/
            excluded_source_fields: Optional list of document "source" fields to exclude from the response.

        Returns:
            Dict: Up to k documents closest to query_embedding.

        """
        filters = self._parse_filters(filters)

        if not filters:
            search_query = self._default_approximate_search_query(
                query_embedding,
                k,
                vector_field=embedding_field,
                excluded_source_fields=excluded_source_fields,
            )
        elif (
            search_method == "approximate"
            and self._method["engine"]
            in [
                "lucene",
                "faiss",
            ]
            and self._efficient_filtering_enabled
        ):
            # if engine is lucene or faiss, opensearch recommends efficient-kNN filtering.
            search_query = self._default_approximate_search_query(
                query_embedding,
                k,
                filters={"bool": {"filter": filters}},
                vector_field=embedding_field,
                excluded_source_fields=excluded_source_fields,
            )
        else:
            if self.is_aoss:
                # if is_aoss is set we are using Opensearch Serverless AWS offering which cannot use
                # painless scripting so default scoring script returned will be just normal knn_score script
                search_query = self._default_scoring_script_query(
                    query_embedding,
                    k,
                    space_type=self.space_type,
                    pre_filter={"bool": {"filter": filters}},
                    vector_field=embedding_field,
                    excluded_source_fields=excluded_source_fields,
                )
            else:
                # https://opensearch.org/docs/latest/search-plugins/knn/painless-functions/
                search_query = self._default_scoring_script_query(
                    query_embedding,
                    k,
                    space_type="l2Squared",
                    pre_filter={"bool": {"filter": filters}},
                    vector_field=embedding_field,
                    excluded_source_fields=excluded_source_fields,
                )
        return search_query

    def _hybrid_search_query(
        self,
        text_field: str,
        query_str: str,
        embedding_field: str,
        query_embedding: List[float],
        k: int,
        filters: Optional[MetadataFilters] = None,
        excluded_source_fields: Optional[List[str]] = None,
    ) -> Dict:
        knn_query = self._knn_search_query(embedding_field, query_embedding, k, filters)
        lexical_query = self._lexical_search_query(text_field, query_str, k, filters)

        query = {
            "size": k,
            "query": {
                "hybrid": {"queries": [lexical_query["query"], knn_query["query"]]}
            },
        }
        if excluded_source_fields:
            query["_source"] = {"exclude": excluded_source_fields}
        return query

    def _lexical_search_query(
        self,
        text_field: str,
        query_str: str,
        k: int,
        filters: Optional[MetadataFilters] = None,
        excluded_source_fields: Optional[List[str]] = None,
    ) -> Dict:
        lexical_query = {
            "bool": {"must": {"match": {text_field: {"query": query_str}}}}
        }

        parsed_filters = self._parse_filters(filters)
        if len(parsed_filters) > 0:
            lexical_query["bool"]["filter"] = parsed_filters

        query = {
            "size": k,
            "query": lexical_query,
        }
        if excluded_source_fields:
            query["_source"] = {"exclude": excluded_source_fields}
        return query

    def __get_painless_scripting_source(
        self, space_type: str, vector_field: str = "embedding"
    ) -> str:
        """
        For Painless Scripting, it returns the script source based on space type.
        This does not work with Opensearch Serverless currently.
        """
        source_value = (
            f"(1.0 + {space_type}(params.query_value, doc['{vector_field}']))"
        )
        if space_type == "cosineSimilarity":
            return source_value
        else:
            return f"1/{source_value}"

    def _get_knn_scoring_script(self, space_type, vector_field, query_vector):
        """Default scoring script that will work with AWS Opensearch Serverless."""
        return {
            "source": "knn_score",
            "lang": "knn",
            "params": {
                "field": vector_field,
                "query_value": query_vector,
                "space_type": space_type,
            },
        }

    def _get_painless_scoring_script(self, space_type, vector_field, query_vector):
        source = self.__get_painless_scripting_source(space_type, vector_field)
        return {
            "source": source,
            "params": {
                "field": vector_field,
                "query_value": query_vector,
            },
        }

    def _default_scoring_script_query(
        self,
        query_vector: List[float],
        k: int = 4,
        space_type: str = "l2Squared",
        pre_filter: Optional[Union[Dict, List]] = None,
        vector_field: str = "embedding",
        excluded_source_fields: Optional[List[str]] = None,
    ) -> Dict:
        """
        For Scoring Script Search, this is the default query. Has to account for Opensearch Service
        Serverless which does not support painless scripting functions so defaults to knn_score.
        """
        if not pre_filter:
            pre_filter = MATCH_ALL_QUERY

        # check if we can use painless scripting or have to use default knn_score script
        if self.is_aoss:
            if space_type == "l2Squared":
                raise ValueError(
                    "Unsupported space type for aoss. Can only use l1, l2, cosinesimil."
                )
            script = self._get_knn_scoring_script(
                space_type, vector_field, query_vector
            )
        else:
            script = self._get_painless_scoring_script(
                space_type, vector_field, query_vector
            )
        query = {
            "size": k,
            "query": {
                "script_score": {
                    "query": pre_filter,
                    "script": script,
                }
            },
        }
        if excluded_source_fields:
            query["_source"] = {"exclude": excluded_source_fields}
        return query

    def _is_aoss_enabled(self, http_auth: Any) -> bool:
        """Check if the service is http_auth is set as `aoss`."""
        return (
            http_auth is not None
            and hasattr(http_auth, "service")
            and http_auth.service == "aoss"
        )

    def _is_efficient_filtering_enabled(self) -> bool:
        """Check if kNN with efficient filtering is enabled."""
        # Technically, AOSS supports efficient filtering,
        # but we can't check the version number using .info(); AOSS doesn't support 'GET /'
        #  so we must skip and disable by default.
        if self.is_aoss:
            ef_enabled = False
        else:
            self._os_version = self._get_opensearch_version()
            major, minor, patch = self._os_version.split(".")
            ef_enabled = int(major) > 2 or (int(major) == 2 and int(minor) >= 9)
        return ef_enabled

    def index_results(self, nodes: List[BaseNode], **kwargs: Any) -> List[str]:
        """Store results in the index."""
        embeddings: List[List[float]] = []
        texts: List[str] = []
        metadatas: List[dict] = []
        ids: List[str] = []
        for node in nodes:
            ids.append(node.node_id)
            embeddings.append(node.get_embedding())
            texts.append(node.get_content(metadata_mode=MetadataMode.NONE))
            metadatas.append(node_to_metadata_dict(node, remove_text=True))

        return self._bulk_ingest_embeddings(
            self._os_client,
            self._index,
            embeddings,
            texts,
            metadatas=metadatas,
            ids=ids,
            vector_field=self._embedding_field,
            text_field=self._text_field,
            mapping=None,
            max_chunk_bytes=self._max_chunk_bytes,
            is_aoss=self.is_aoss,
        )

    async def aindex_results(self, nodes: List[BaseNode], **kwargs: Any) -> List[str]:
        """Store results in the index."""
        embeddings: List[List[float]] = []
        texts: List[str] = []
        metadatas: List[dict] = []
        ids: List[str] = []
        for node in nodes:
            ids.append(node.node_id)
            embeddings.append(node.get_embedding())
            texts.append(node.get_content(metadata_mode=MetadataMode.NONE))
            metadatas.append(node_to_metadata_dict(node, remove_text=True))

        return await self._abulk_ingest_embeddings(
            self._os_async_client,
            self._index,
            embeddings,
            texts,
            metadatas=metadatas,
            ids=ids,
            vector_field=self._embedding_field,
            text_field=self._text_field,
            mapping=None,
            max_chunk_bytes=self._max_chunk_bytes,
            is_aoss=self.is_aoss,
        )

    def delete_by_doc_id(self, doc_id: str) -> None:
        """
        Deletes all OpenSearch documents corresponding to the given LlamaIndex `Document` ID.

        Args:
            doc_id (str): a LlamaIndex `Document` id

        """
        search_query = {
            "query": {"term": {"metadata.doc_id.keyword": {"value": doc_id}}}
        }
        self._os_client.delete_by_query(
            index=self._index, body=search_query, refresh=True
        )

    async def adelete_by_doc_id(self, doc_id: str) -> None:
        """
        Deletes all OpenSearch documents corresponding to the given LlamaIndex `Document` ID.

        Args:
            doc_id (str): a LlamaIndex `Document` id

        """
        search_query = {
            "query": {"term": {"metadata.doc_id.keyword": {"value": doc_id}}}
        }
        await self._os_async_client.delete_by_query(
            index=self._index, body=search_query, refresh=True
        )

    def delete_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
        **delete_kwargs: Any,
    ) -> None:
        """
        Deletes nodes.

        Args:
            node_ids (Optional[List[str]], optional): IDs of nodes to delete. Defaults to None.
            filters (Optional[MetadataFilters], optional): Metadata filters. Defaults to None.

        """
        if not node_ids and not filters:
            return

        query = {"query": {"bool": {"filter": []}}}
        if node_ids:
            query["query"]["bool"]["filter"].append({"terms": {"_id": node_ids or []}})

        if filters:
            query["query"]["bool"]["filter"].extend(self._parse_filters(filters))

        self._os_client.delete_by_query(index=self._index, body=query, refresh=True)

    async def adelete_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
        **delete_kwargs: Any,
    ) -> None:
        """
        Deletes nodes.

        Args:
            node_ids (Optional[List[str]], optional): IDs of nodes to delete. Defaults to None.
            filters (Optional[MetadataFilters], optional): Metadata filters. Defaults to None.

        """
        if not node_ids and not filters:
            return

        query = {"query": {"bool": {"filter": []}}}
        if node_ids:
            query["query"]["bool"]["filter"].append({"terms": {"_id": node_ids or []}})

        if filters:
            query["query"]["bool"]["filter"].extend(self._parse_filters(filters))

        await self._os_async_client.delete_by_query(
            index=self._index, body=query, refresh=True
        )

    def clear(self) -> None:
        """Clears index."""
        query = {"query": {"bool": {"filter": []}}}
        self._os_client.delete_by_query(index=self._index, body=query, refresh=True)

    async def aclear(self) -> None:
        """Clears index."""
        query = {"query": {"bool": {"filter": []}}}
        await self._os_async_client.delete_by_query(
            index=self._index, body=query, refresh=True
        )

    def query(
        self,
        query_mode: VectorStoreQueryMode,
        query_str: Optional[str],
        query_embedding: List[float],
        k: int,
        filters: Optional[MetadataFilters] = None,
    ) -> VectorStoreQueryResult:
        if query_mode == VectorStoreQueryMode.HYBRID:
            if query_str is None or self._search_pipeline is None:
                raise ValueError(INVALID_HYBRID_QUERY_ERROR)
            search_query = self._hybrid_search_query(
                self._text_field,
                query_str,
                self._embedding_field,
                query_embedding,
                k,
                filters=filters,
                excluded_source_fields=self._excluded_source_fields,
            )
            params = {
                "search_pipeline": self._search_pipeline,
            }
        elif query_mode == VectorStoreQueryMode.TEXT_SEARCH:
            search_query = self._lexical_search_query(
                self._text_field,
                query_str,
                k,
                filters=filters,
                excluded_source_fields=self._excluded_source_fields,
            )
            params = None
        else:
            search_query = self._knn_search_query(
                self._embedding_field,
                query_embedding,
                k,
                filters=filters,
                excluded_source_fields=self._excluded_source_fields,
            )
            params = None

        res = self._os_client.search(
            index=self._index, body=search_query, params=params
        )

        return self._to_query_result(res)

    async def aquery(
        self,
        query_mode: VectorStoreQueryMode,
        query_str: Optional[str],
        query_embedding: List[float],
        k: int,
        filters: Optional[MetadataFilters] = None,
    ) -> VectorStoreQueryResult:
        if query_mode == VectorStoreQueryMode.HYBRID:
            if query_str is None or self._search_pipeline is None:
                raise ValueError(INVALID_HYBRID_QUERY_ERROR)
            search_query = self._hybrid_search_query(
                self._text_field,
                query_str,
                self._embedding_field,
                query_embedding,
                k,
                filters=filters,
                excluded_source_fields=self._excluded_source_fields,
            )
            params = {
                "search_pipeline": self._search_pipeline,
            }
        elif query_mode == VectorStoreQueryMode.TEXT_SEARCH:
            search_query = self._lexical_search_query(
                self._text_field,
                query_str,
                k,
                filters=filters,
                excluded_source_fields=self._excluded_source_fields,
            )
            params = None
        else:
            search_query = self._knn_search_query(
                self._embedding_field,
                query_embedding,
                k,
                filters=filters,
                excluded_source_fields=self._excluded_source_fields,
            )
            params = None

        res = await self._os_async_client.search(
            index=self._index, body=search_query, params=params
        )

        return self._to_query_result(res)

    def _to_query_result(self, res) -> VectorStoreQueryResult:
        nodes = []
        ids = []
        scores = []
        for hit in res["hits"]["hits"]:
            source = hit["_source"]
            node_id = hit["_id"]
            text = source[self._text_field]
            metadata = source.get("metadata", None)

            try:
                node = metadata_dict_to_node(metadata)
                node.text = text
            except Exception:
                # TODO: Legacy support for old nodes
                node_info = source.get("node_info")
                relationships = source.get("relationships") or {}
                start_char_idx = None
                end_char_idx = None
                if isinstance(node_info, dict):
                    start_char_idx = node_info.get("start", None)
                    end_char_idx = node_info.get("end", None)

                node = TextNode(
                    text=text,
                    metadata=metadata,
                    id_=node_id,
                    start_char_idx=start_char_idx,
                    end_char_idx=end_char_idx,
                    relationships=relationships,
                )
            ids.append(node_id)
            nodes.append(node)
            scores.append(hit["_score"])

        return VectorStoreQueryResult(nodes=nodes, ids=ids, similarities=scores)

index_results #

index_results(nodes: List[BaseNode], **kwargs: Any) -> List[str]

Store results in the index.

Source code in llama_index/vector_stores/opensearch/base.py
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
def index_results(self, nodes: List[BaseNode], **kwargs: Any) -> List[str]:
    """Store results in the index."""
    embeddings: List[List[float]] = []
    texts: List[str] = []
    metadatas: List[dict] = []
    ids: List[str] = []
    for node in nodes:
        ids.append(node.node_id)
        embeddings.append(node.get_embedding())
        texts.append(node.get_content(metadata_mode=MetadataMode.NONE))
        metadatas.append(node_to_metadata_dict(node, remove_text=True))

    return self._bulk_ingest_embeddings(
        self._os_client,
        self._index,
        embeddings,
        texts,
        metadatas=metadatas,
        ids=ids,
        vector_field=self._embedding_field,
        text_field=self._text_field,
        mapping=None,
        max_chunk_bytes=self._max_chunk_bytes,
        is_aoss=self.is_aoss,
    )

aindex_results async #

aindex_results(nodes: List[BaseNode], **kwargs: Any) -> List[str]

Store results in the index.

Source code in llama_index/vector_stores/opensearch/base.py
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
async def aindex_results(self, nodes: List[BaseNode], **kwargs: Any) -> List[str]:
    """Store results in the index."""
    embeddings: List[List[float]] = []
    texts: List[str] = []
    metadatas: List[dict] = []
    ids: List[str] = []
    for node in nodes:
        ids.append(node.node_id)
        embeddings.append(node.get_embedding())
        texts.append(node.get_content(metadata_mode=MetadataMode.NONE))
        metadatas.append(node_to_metadata_dict(node, remove_text=True))

    return await self._abulk_ingest_embeddings(
        self._os_async_client,
        self._index,
        embeddings,
        texts,
        metadatas=metadatas,
        ids=ids,
        vector_field=self._embedding_field,
        text_field=self._text_field,
        mapping=None,
        max_chunk_bytes=self._max_chunk_bytes,
        is_aoss=self.is_aoss,
    )

delete_by_doc_id #

delete_by_doc_id(doc_id: str) -> None

Deletes all OpenSearch documents corresponding to the given LlamaIndex Document ID.

Parameters:

Name Type Description Default
doc_id str

a LlamaIndex Document id

required
Source code in llama_index/vector_stores/opensearch/base.py
730
731
732
733
734
735
736
737
738
739
740
741
742
743
def delete_by_doc_id(self, doc_id: str) -> None:
    """
    Deletes all OpenSearch documents corresponding to the given LlamaIndex `Document` ID.

    Args:
        doc_id (str): a LlamaIndex `Document` id

    """
    search_query = {
        "query": {"term": {"metadata.doc_id.keyword": {"value": doc_id}}}
    }
    self._os_client.delete_by_query(
        index=self._index, body=search_query, refresh=True
    )

adelete_by_doc_id async #

adelete_by_doc_id(doc_id: str) -> None

Deletes all OpenSearch documents corresponding to the given LlamaIndex Document ID.

Parameters:

Name Type Description Default
doc_id str

a LlamaIndex Document id

required
Source code in llama_index/vector_stores/opensearch/base.py
745
746
747
748
749
750
751
752
753
754
755
756
757
758
async def adelete_by_doc_id(self, doc_id: str) -> None:
    """
    Deletes all OpenSearch documents corresponding to the given LlamaIndex `Document` ID.

    Args:
        doc_id (str): a LlamaIndex `Document` id

    """
    search_query = {
        "query": {"term": {"metadata.doc_id.keyword": {"value": doc_id}}}
    }
    await self._os_async_client.delete_by_query(
        index=self._index, body=search_query, refresh=True
    )

delete_nodes #

delete_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None, **delete_kwargs: Any) -> None

Deletes nodes.

Parameters:

Name Type Description Default
node_ids Optional[List[str]]

IDs of nodes to delete. Defaults to None.

None
filters Optional[MetadataFilters]

Metadata filters. Defaults to None.

None
Source code in llama_index/vector_stores/opensearch/base.py
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
def delete_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
    **delete_kwargs: Any,
) -> None:
    """
    Deletes nodes.

    Args:
        node_ids (Optional[List[str]], optional): IDs of nodes to delete. Defaults to None.
        filters (Optional[MetadataFilters], optional): Metadata filters. Defaults to None.

    """
    if not node_ids and not filters:
        return

    query = {"query": {"bool": {"filter": []}}}
    if node_ids:
        query["query"]["bool"]["filter"].append({"terms": {"_id": node_ids or []}})

    if filters:
        query["query"]["bool"]["filter"].extend(self._parse_filters(filters))

    self._os_client.delete_by_query(index=self._index, body=query, refresh=True)

adelete_nodes async #

adelete_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None, **delete_kwargs: Any) -> None

Deletes nodes.

Parameters:

Name Type Description Default
node_ids Optional[List[str]]

IDs of nodes to delete. Defaults to None.

None
filters Optional[MetadataFilters]

Metadata filters. Defaults to None.

None
Source code in llama_index/vector_stores/opensearch/base.py
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
async def adelete_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
    **delete_kwargs: Any,
) -> None:
    """
    Deletes nodes.

    Args:
        node_ids (Optional[List[str]], optional): IDs of nodes to delete. Defaults to None.
        filters (Optional[MetadataFilters], optional): Metadata filters. Defaults to None.

    """
    if not node_ids and not filters:
        return

    query = {"query": {"bool": {"filter": []}}}
    if node_ids:
        query["query"]["bool"]["filter"].append({"terms": {"_id": node_ids or []}})

    if filters:
        query["query"]["bool"]["filter"].extend(self._parse_filters(filters))

    await self._os_async_client.delete_by_query(
        index=self._index, body=query, refresh=True
    )

clear #

clear() -> None

Clears index.

Source code in llama_index/vector_stores/opensearch/base.py
814
815
816
817
def clear(self) -> None:
    """Clears index."""
    query = {"query": {"bool": {"filter": []}}}
    self._os_client.delete_by_query(index=self._index, body=query, refresh=True)

aclear async #

aclear() -> None

Clears index.

Source code in llama_index/vector_stores/opensearch/base.py
819
820
821
822
823
824
async def aclear(self) -> None:
    """Clears index."""
    query = {"query": {"bool": {"filter": []}}}
    await self._os_async_client.delete_by_query(
        index=self._index, body=query, refresh=True
    )

options: members: - OpensearchVectorStore