Solr
ApacheSolrVectorStore #
Bases: BasePydanticVectorStore
A LlamaIndex vector store implementation for Apache Solr.
This vector store provides integration with Apache Solr, supporting both dense vector similarity search (KNN) and sparse text search (BM25).
Key Features:
- Dense vector embeddings with KNN similarity search
- Sparse text search with BM25 scoring and field boosting
- Metadata filtering with various operators
- Async/sync operations
- Automatic query escaping and field preprocessing
Field Mapping: the vector store maps LlamaIndex node attributes to Solr fields:
nodeid_field: Maps tonode.id_(required)content_field: Maps tonode.get_content()(optional)embedding_field: Maps tonode.get_embedding()(optional)docid_field: Maps tonode.ref_doc_id(optional)metadata fields: Mapped viametadata_to_solr_field_mapping
Query Modes:
DEFAULT: Dense vector KNN search using embeddingsTEXT_SEARCH: Sparse BM25 text search with field boosting
Source code in llama_index/vector_stores/solr/base.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 | |
query #
query(query: VectorStoreQuery, **search_kwargs: Any) -> VectorStoreQueryResult
Execute a synchronous search query against the Solr vector store.
This method supports both dense vector similarity search (KNN) and sparse text search (BM25) depending on the query mode and parameters. It handles query validation, Solr query construction, execution, and result processing.
Query Types:
- Dense Vector Search: Uses
query_embeddingfor KNN similarity search - Text Search: Uses
query_strfor BM25 text search with field boosting - Filtered Search: Combines vector/text search with metadata filters
Supported Filter Operations:
EQ,NE: Equality and inequality comparisonsGT,GTE,LT,LTE: Numeric range comparisonsIN,NIN: List membership testsTEXT_MATCH: Exact text matching
Unsupported Filter Operations:
ANY,ALL: Complex logical operationsTEXT_MATCH_INSENSITIVE: Case-insensitive text matchingCONTAINS: Substring matching
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
VectorStoreQuery
|
The vector store query containing search parameters:
|
required |
**search_kwargs
|
Any
|
Extra keyword arguments (ignored for compatibility) |
{}
|
Returns:
| Type | Description |
|---|---|
VectorStoreQueryResult
|
VectorStoreQueryResult containing: |
VectorStoreQueryResult
|
|
VectorStoreQueryResult
|
|
VectorStoreQueryResult
|
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If the query mode is unsupported, or if required fields
are missing (e.g., |
Note
This method performs synchronous I/O operations. For better performance
in async contexts, use the :py:meth:aquery method instead.
Source code in llama_index/vector_stores/solr/base.py
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 | |
aquery
async
#
aquery(query: VectorStoreQuery, **search_kwargs: Any) -> VectorStoreQueryResult
Execute an asynchronous search query against the Solr vector store.
This method supports both dense vector similarity search (KNN) and sparse text search (BM25) depending on the query mode and parameters. It handles query validation, Solr query construction, execution, and result processing.
Query Types:
- Dense Vector Search: Uses
query_embeddingfor KNN similarity search - Text Search: Uses
query_strfor BM25 text search with field boosting - Filtered Search: Combines vector/text search with metadata filters
Supported Filter Operations:
EQ,NE: Equality and inequality comparisonsGT,GTE,LT,LTE: Numeric range comparisonsIN,NIN: List membership testsTEXT_MATCH: Exact text matching
Unsupported Filter Operations:
ANY,ALL: Complex logical operationsTEXT_MATCH_INSENSITIVE: Case-insensitive text matchingCONTAINS: Substring matching
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
VectorStoreQuery
|
The vector store query containing search parameters:
|
required |
**search_kwargs
|
Any
|
Extra keyword arguments (ignored for compatibility) |
{}
|
Returns:
| Type | Description |
|---|---|
VectorStoreQueryResult
|
VectorStoreQueryResult containing: |
VectorStoreQueryResult
|
|
VectorStoreQueryResult
|
|
VectorStoreQueryResult
|
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If the query mode is unsupported, or if required fields
are missing (e.g., |
Source code in llama_index/vector_stores/solr/base.py
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 | |
add #
add(nodes: Sequence[BaseNode], **add_kwargs: Any) -> list[str]
Synchronously add nodes (documents) to a Solr collection.
Mapping from Solr fields to :py:class:llama_index.core.schema.BaseNode attributes
should be as follows:
nodeid_field->node_idcontent_field->contentembedding_field->embeddingdocid_field->ref_doc_id
All other fields corresponding to the Solr collection should be packed as a single
dict in the metadata field.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
nodes
|
Sequence[BaseNode]
|
The nodes (documents) to be added to the Solr collection. |
required |
**add_kwargs
|
Any
|
Extra keyword arguments. |
{}
|
Returns:
| Type | Description |
|---|---|
list[str]
|
A list of node IDs for each node added to the store. |
Source code in llama_index/vector_stores/solr/base.py
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 | |
async_add
async
#
async_add(nodes: Sequence[BaseNode], **add_kwargs: Any) -> list[str]
Asynchronously add nodes (documents) to a Solr collection.
Mapping from Solr fields to :py:class:llama_index.core.schema.BaseNode attributes
should be as follows:
nodeid_field->node_idcontent_field->contentembedding_field->embeddingdocid_field->ref_doc_id
All other fields corresponding to the Solr collection should be packed as a single
dict in the metadata field.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
nodes
|
Sequence[BaseNode]
|
The nodes (documents) to be added to the Solr collection. |
required |
**add_kwargs
|
Any
|
Extra keyword arguments. |
{}
|
Returns:
| Type | Description |
|---|---|
list[str]
|
A list of node IDs for each node added to the store. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If called with an empty list of nodes. |
Source code in llama_index/vector_stores/solr/base.py
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 | |
delete #
delete(ref_doc_id: str, **delete_kwargs: Any) -> None
Synchronously delete a node from the collection using its reference document ID.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
ref_doc_id
|
str
|
The reference document ID of the node to be deleted. |
required |
**delete_kwargs
|
Any
|
Extra keyword arguments, ignored by this implementation. These are added solely for interface compatibility. |
{}
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If a |
Source code in llama_index/vector_stores/solr/base.py
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 | |
adelete
async
#
adelete(ref_doc_id: str, **delete_kwargs: Any) -> None
Asynchronously delete a node from the collection using its reference document ID.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
ref_doc_id
|
str
|
The reference document ID of the node to be deleted. |
required |
**delete_kwargs
|
Any
|
Extra keyword arguments, ignored by this implementation. These are added solely for interface compatibility. |
{}
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If a |
Source code in llama_index/vector_stores/solr/base.py
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 | |
delete_nodes #
delete_nodes(node_ids: Optional[list[str]] = None, filters: Optional[MetadataFilters] = None, **delete_kwargs: Any) -> None
Synchronously delete nodes from vector store based on node ids.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
node_ids
|
Optional[list[str]]
|
The node IDs to delete. |
None
|
filters
|
Optional[MetadataFilters]
|
The filters to be applied to the node when deleting. |
None
|
**delete_kwargs
|
Any
|
Extra keyword arguments, ignored by this implementation. These are added solely for interface compatibility. |
{}
|
Source code in llama_index/vector_stores/solr/base.py
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 | |
adelete_nodes
async
#
adelete_nodes(node_ids: Optional[list[str]] = None, filters: Optional[MetadataFilters] = None, **delete_kwargs: Any) -> None
Asynchronously delete nodes from vector store based on node ids.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
node_ids
|
Optional[list[str]]
|
The node IDs to delete. |
None
|
filters
|
Optional[MetadataFilters]
|
The filters to be applied to the node when deleting. |
None
|
**delete_kwargs
|
Any
|
Extra keyword arguments, ignored by this implementation. These are added solely for interface compatibility. |
{}
|
Source code in llama_index/vector_stores/solr/base.py
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 | |
clear #
clear() -> None
Delete all documents from the Solr collection synchronously. This action is not reversible!
Source code in llama_index/vector_stores/solr/base.py
818 819 820 821 822 823 | |
aclear
async
#
aclear() -> None
Delete all documents from the Solr collection asynchronously. This action is not reversible!
Source code in llama_index/vector_stores/solr/base.py
825 826 827 828 829 830 | |
close #
close() -> None
Close the Solr client synchronously.
Source code in llama_index/vector_stores/solr/base.py
832 833 834 835 836 837 838 839 840 841 842 | |
aclose
async
#
aclose() -> None
Explicit aclose for callers running inside an event loop.
Source code in llama_index/vector_stores/solr/base.py
844 845 846 847 | |
AsyncSolrClient #
Bases: _BaseSolrClient
A Solr client that wraps :py:class:aiosolr.Client.
See aiosolr <https://github.com/youversion/aiosolr>_ for implementation details.
Source code in llama_index/vector_stores/solr/client/async_.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 | |
search
async
#
search(query_params: Mapping[str, Any], **kwargs: Any) -> SolrSelectResponse
Asynchronously search Solr with the input query, returning any matching documents.
No validation is done on the input query dictionary.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query_params
|
Mapping[str, Any]
|
A query dictionary to be sent to Solr. |
required |
**kwargs
|
Any
|
Additional keyword arguments to pass to :py:meth: |
{}
|
Returns:
| Type | Description |
|---|---|
SolrSelectResponse
|
The deserialized response from Solr. |
Source code in llama_index/vector_stores/solr/client/async_.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | |
add
async
#
add(documents: Sequence[Mapping[str, Any]], **kwargs: Any) -> SolrUpdateResponse
Asynchronously add documents to the Solr collection.
No validation is done on the input documents.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
documents
|
Sequence[Mapping[str, Any]]
|
The documents to be added to the Solr collection. These documents should be serializable to JSON. |
required |
**kwargs
|
Any
|
Additional keyword arguments to be passed to :py:meth: |
{}
|
Returns:
| Type | Description |
|---|---|
SolrUpdateResponse
|
The deserialized update response from Solr. |
Source code in llama_index/vector_stores/solr/client/async_.py
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | |
delete_by_query
async
#
delete_by_query(query_string: str, **kwargs: Any) -> SolrUpdateResponse
Asynchronously delete documents from the Solr collection using a query string.
No validation is done on the input query string.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query_string
|
str
|
A query string matching the documents that should be deleted. |
required |
**kwargs
|
Any
|
Additional keyword arguments to be passed to
:py:meth: |
{}
|
Returns:
| Type | Description |
|---|---|
SolrUpdateResponse
|
The deserialized response from Solr. |
Source code in llama_index/vector_stores/solr/client/async_.py
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 | |
delete_by_id
async
#
delete_by_id(ids: Sequence[str], **kwargs: Any) -> SolrUpdateResponse
Asynchronously delete documents from the Solr collection using their IDs.
If the set of IDs is known, this is generally more efficient than using
:py:meth:.delete_by_query.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
ids
|
Sequence[str]
|
A sequence of document IDs to be deleted. |
required |
**kwargs
|
Any
|
Additional keyword arguments to be passed to
:py:meth: |
{}
|
Returns:
| Type | Description |
|---|---|
SolrUpdateResponse
|
The deserialized response from Solr. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the list of IDs is empty. |
Source code in llama_index/vector_stores/solr/client/async_.py
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | |
clear_collection
async
#
clear_collection(**kwargs) -> SolrUpdateResponse
Asynchronously delete all documents from the Solr collection.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
**kwargs
|
Optional keyword arguments to be passed to
:py:meth: |
{}
|
Returns:
| Type | Description |
|---|---|
SolrUpdateResponse
|
The deserialized response from Solr. |
Source code in llama_index/vector_stores/solr/client/async_.py
253 254 255 256 257 258 259 260 261 262 263 264 265 266 | |
close
async
#
close() -> None
Close the aiosolr client, if it exists.
Source code in llama_index/vector_stores/solr/client/async_.py
268 269 270 271 | |
SyncSolrClient #
Bases: _BaseSolrClient
A synchronous Solr client that wraps :py:class:pysolr.Solr.
See pysolr <https://github.com/django-haystack/pysolr/blob/master/pysolr.py>_ for
implementation details.
Source code in llama_index/vector_stores/solr/client/sync.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 | |
close #
close() -> None
Close the underlying Solr client session.
Source code in llama_index/vector_stores/solr/client/sync.py
50 51 52 53 54 55 56 | |
search #
search(query_params: Mapping[str, Any], **kwargs: Any) -> SolrSelectResponse
Search Solr with the input query, returning any matching documents.
No validation is done on the input query dictionary.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query_params
|
Mapping[str, Any]
|
A query dictionary to be sent to Solr. |
required |
**kwargs
|
Any
|
Additional keyword arguments to pass to :py:meth: |
{}
|
Returns:
| Type | Description |
|---|---|
SolrSelectResponse
|
The deserialized response from Solr. |
Source code in llama_index/vector_stores/solr/client/sync.py
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | |
add #
add(documents: Sequence[Mapping[str, Any]], **kwargs: Any) -> SolrUpdateResponse
Add documents to the Solr collection.
No validation is done on the input documents.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
documents
|
Sequence[Mapping[str, Any]]
|
The documents to be added to the Solr collection. These documents should be serializable to JSON. |
required |
**kwargs
|
Any
|
Additional keyword arguments to pass to :py:meth: |
{}
|
Source code in llama_index/vector_stores/solr/client/sync.py
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | |
delete_by_query #
delete_by_query(query_string: str, **kwargs: Any) -> SolrUpdateResponse
Delete documents from the Solr collection using a query string.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query_string
|
str
|
A query string matching the documents that should be deleted. |
required |
**kwargs
|
Any
|
Additional keyword arguments to pass to :py:meth: |
{}
|
Returns:
| Type | Description |
|---|---|
SolrUpdateResponse
|
The deserialized response from Solr. |
Source code in llama_index/vector_stores/solr/client/sync.py
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 | |
delete_by_id #
delete_by_id(ids: Sequence[str], **kwargs: Any) -> SolrUpdateResponse
Delete documents from the Solr collection using their IDs.
If the set of IDs is known, this is generally more efficient than using
:py:meth:.delete_by_query.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
ids
|
Sequence[str]
|
A sequence of document IDs to be deleted. |
required |
**kwargs
|
Any
|
Additional keyword arguments to pass to :py:meth: |
{}
|
Returns:
| Type | Description |
|---|---|
SolrUpdateResponse
|
The deserialized response from Solr. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the list of IDs is empty. |
Source code in llama_index/vector_stores/solr/client/sync.py
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 | |
clear_collection #
clear_collection(**kwargs: Any) -> SolrUpdateResponse
Delete all documents from the Solr collection.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
**kwargs
|
Any
|
Optional keyword arguments to be passed to
:py:meth: |
{}
|
Returns:
| Type | Description |
|---|---|
SolrUpdateResponse
|
The deserialized response from Solr. |
Source code in llama_index/vector_stores/solr/client/sync.py
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 | |
BoostedTextField #
Bases: BaseModel
A text field with an optional boost value for Solr queries.
This model represents a Solr field that can have a multiplicative boost factor applied to increase or decrease its relevance in search results. Boost factors greater than 1.0 increase relevance, while factors between 0.0 and 1.0 decrease it.
Attributes: field: The Solr field name to include in the search. boost_factor: The boost multiplier to apply. Defaults to 1.0 (no boost). Values > 1.0 increase relevance, 0.0 < values < 1.0 decrease it.
Source code in llama_index/vector_stores/solr/types.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | |
get_query_str #
get_query_str() -> str
Return Solr query syntax representation for this field.
If the boost factor is 1.0 (default) the field term is returned as-is;
otherwise the canonical Solr boost syntax field^boost_factor is produced.
Source code in llama_index/vector_stores/solr/types.py
29 30 31 32 33 34 35 36 37 38 | |
options: members: