Aleph Alpha Embeddings
If you’re opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.
%pip install llama-index-embeddings-alephalpha
!pip install llama-index
# Initialise with your AA tokenimport os
os.environ["AA_TOKEN"] = "your_token_here"
With luminous-base
embeddings.
Section titled “With luminous-base embeddings.”- representation=“Document”: Use this for texts (documents) you want to store in your vector database
- representation=“Query”: Use this for search queries to find the most relevant documents in your vector database
- representation=“Symmetric”: Use this for clustering, classification, anomaly detection or visualisation tasks.
from llama_index.embeddings.alephalpha import AlephAlphaEmbedding
# To customize your token, do this# otherwise it will lookup AA_TOKEN from your env variable# embed_model = AlephAlpha(token="<aa_token>")
# with representation='query'embed_model = AlephAlphaEmbedding( model="luminous-base", representation="Query",)
embeddings = embed_model.get_text_embedding("Hello Aleph Alpha!")
print(len(embeddings))print(embeddings[:5])
representation_enum: SemanticRepresentation.Query
5120[0.14257812, 2.59375, 0.33203125, -0.33789062, -0.94140625]
# with representation='Document'embed_model = AlephAlphaEmbedding( model="luminous-base", representation="Document",)
embeddings = embed_model.get_text_embedding("Hello Aleph Alpha!")
print(len(embeddings))print(embeddings[:5])
representation_enum: SemanticRepresentation.Document
5120[0.14257812, 2.59375, 0.33203125, -0.33789062, -0.94140625]