MistralRS LLM
NOTE: MistralRS requires a rust package manager called cargo
to be installed. Visit https://rustup.rs/ for installation details.
%pip install llama-index-core%pip install llama-index-readers-file%pip install llama-index-llms-mistral-rs%pip install llama-index-llms-huggingface
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settingsfrom llama_index.core.embeddings import resolve_embed_modelfrom llama_index.llms.mistral_rs import MistralRSfrom mistralrs import Which, Architecture
documents = SimpleDirectoryReader("data").load_data()
# bge embedding modelSettings.embed_model = resolve_embed_model("local:BAAI/bge-small-en-v1.5")
MistralRS uses model IDs from huggingface hub.
# Full ModelSettings.llm = MistralRS( which=Which.Plain( model_id="mistralai/Mistral-7B-Instruct-v0.1", arch=Architecture.Mistral, tokenizer_json=None, repeat_last_n=64, ), max_new_tokens=4096, context_window=1024 * 5,)
# GGUF Model, QuantizedSettings.llm = MistralRS( which=Which.GGUF( tok_model_id="mistralai/Mistral-7B-Instruct-v0.1", quantized_model_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", quantized_filename="mistral-7b-instruct-v0.1.Q4_K_M.gguf", tokenizer_json=None, repeat_last_n=64, ), max_new_tokens=4096, context_window=1024 * 5,)
index = VectorStoreIndex.from_documents( documents,)
query_engine = index.as_query_engine()response = query_engine.query("How do I pronounce graphene?")print(response)