Skip to content

Response Synthesis Modules

Detailed inputs/outputs for each response synthesizer are found below.

The following shows the setup for utilizing all kwargs.

  • response_mode specifies which response synthesizer to use
  • service_context defines the LLM and related settings for synthesis
  • text_qa_template and refine_template are the prompts used at various stages
  • use_async is used for only the tree_summarize response mode right now, to asynchronously build the summary tree
  • streaming configures whether to return a streaming response object or not
  • structured_answer_filtering enables the active filtering of text chunks that are not relevant to a given question

In the synthesize/asyntheszie functions, you can optionally provide additional source nodes, which will be added to the response.source_nodes list.

from llama_index.core.data_structs import Node
from llama_index.core.schema import NodeWithScore
from llama_index.core import get_response_synthesizer
response_synthesizer = get_response_synthesizer(
response_mode="refine",
service_context=service_context,
text_qa_template=text_qa_template,
refine_template=refine_template,
use_async=False,
streaming=False,
)
# synchronous
response = response_synthesizer.synthesize(
"query string",
nodes=[NodeWithScore(node=Node(text="text"), score=1.0), ...],
additional_source_nodes=[
NodeWithScore(node=Node(text="text"), score=1.0),
...,
],
)
# asynchronous
response = await response_synthesizer.asynthesize(
"query string",
nodes=[NodeWithScore(node=Node(text="text"), score=1.0), ...],
additional_source_nodes=[
NodeWithScore(node=Node(text="text"), score=1.0),
...,
],
)

You can also directly return a string, using the lower-level get_response and aget_response functions

response_str = response_synthesizer.get_response(
"query string", text_chunks=["text1", "text2", ...]
)