GPT Builder Demo
Inspired by GPTs interface, presented at OpenAI Dev Day 2023. Construct an agent with natural language.
Here you can build your own agent…with another agent!
%pip install llama-index-embeddings-openai%pip install llama-index-llms-openai%pip install llama-index-readers-file
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.embeddings.openai import OpenAIEmbeddingfrom llama_index.llms.openai import OpenAIfrom llama_index.core import Settings
llm = OpenAI(model="gpt-4o")Settings.llm = llmSettings.embed_model = OpenAIEmbedding(model="text-embedding-3-small")
Define Candidate Tools
Section titled “Define Candidate Tools”We also define a tool retriever to retrieve candidate tools.
In this setting we define tools as different Wikipedia pages.
from llama_index.core import SimpleDirectoryReader
wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Houston"]
from pathlib import Path
import requests
for title in wiki_titles: response = requests.get( "https://en.wikipedia.org/w/api.php", params={ "action": "query", "format": "json", "titles": title, "prop": "extracts", # 'exintro': True, "explaintext": True, }, ).json() page = next(iter(response["query"]["pages"].values())) wiki_text = page["extract"]
data_path = Path("data") if not data_path.exists(): Path.mkdir(data_path)
with open(data_path / f"{title}.txt", "w") as fp: fp.write(wiki_text)
# Load all wiki documentscity_docs = {}for wiki_title in wiki_titles: city_docs[wiki_title] = SimpleDirectoryReader( input_files=[f"data/{wiki_title}.txt"] ).load_data()
Build Query Tool for Each Document
Section titled “Build Query Tool for Each Document”from llama_index.core import VectorStoreIndexfrom llama_index.core.tools import QueryEngineToolfrom llama_index.core import VectorStoreIndex
# Build tool dictionarytool_dict = {}
for wiki_title in wiki_titles: # build vector index vector_index = VectorStoreIndex.from_documents( city_docs[wiki_title], ) # define query engines vector_query_engine = vector_index.as_query_engine(llm=llm)
# define tools vector_tool = QueryEngineTool.from_defaults( query_engine=vector_query_engine, name=wiki_title, description=("Useful for questions related to" f" {wiki_title}"), ) tool_dict[wiki_title] = vector_tool
Define Tool Retriever
Section titled “Define Tool Retriever”# define an "object" index and retriever over these toolsfrom llama_index.core import VectorStoreIndexfrom llama_index.core.objects import ObjectIndex
tool_index = ObjectIndex.from_objects( list(tool_dict.values()), index_cls=VectorStoreIndex,)tool_retriever = tool_index.as_retriever(similarity_top_k=1)
Load Data
Section titled “Load Data”Here we load wikipedia pages from different cities.
Define Meta-Tools for GPT Builder
Section titled “Define Meta-Tools for GPT Builder”from llama_index.core.agent.workflow import FunctionAgentfrom llama_index.core.llms import ChatMessagefrom llama_index.core import ChatPromptTemplatefrom typing import List
GEN_SYS_PROMPT_STR = """\Task information is given below.
Given the task, please generate a system prompt for an OpenAI-powered bot to solve this task:{task} \"""
gen_sys_prompt_messages = [ ChatMessage( role="system", content="You are helping to build a system prompt for another bot.", ), ChatMessage(role="user", content=GEN_SYS_PROMPT_STR),]
GEN_SYS_PROMPT_TMPL = ChatPromptTemplate(gen_sys_prompt_messages)
agent_cache = {}
async def create_system_prompt(task: str): """Create system prompt for another agent given an input task.""" llm = OpenAI(llm="gpt-4") fmt_messages = GEN_SYS_PROMPT_TMPL.format_messages(task=task) response = await llm.achat(fmt_messages) return response.message.content
async def get_tools(task: str): """Get the set of relevant tools to use given an input task.""" subset_tools = await tool_retriever.aretrieve(task) return [t.metadata.name for t in subset_tools]
def create_agent(system_prompt: str, tool_names: List[str]): """Create an agent given a system prompt and an input set of tools.""" llm = OpenAI(model="gpt-4o") try: # get the list of tools input_tools = [tool_dict[tn] for tn in tool_names]
agent = FunctionAgent( tools=input_tools, llm=llm, system_prompt=system_prompt ) agent_cache["agent"] = agent return_msg = "Agent created successfully." except Exception as e: return_msg = f"An error occurred when building an agent. Here is the error: {repr(e)}" return return_msg
from llama_index.core.tools import FunctionTool
system_prompt_tool = FunctionTool.from_defaults(fn=create_system_prompt)get_tools_tool = FunctionTool.from_defaults(fn=get_tools)create_agent_tool = FunctionTool.from_defaults(fn=create_agent)
GPT_BUILDER_SYS_STR = """\You are helping to construct an agent given a user-specified task. You should generally use the tools in this order to build the agent.
1) Create system prompt tool: to create the system prompt for the agent.2) Get tools tool: to fetch the candidate set of tools to use.3) Create agent tool: to create the final agent."""
prefix_msgs = [ChatMessage(role="system", content=GPT_BUILDER_SYS_STR)]
builder_agent = FunctionAgent( tools=[system_prompt_tool, get_tools_tool, create_agent_tool], prefix_messages=prefix_msgs, llm=OpenAI(model="gpt-4o"), verbose=True,)
from llama_index.core.agent.workflow import ToolCallResult
handler = builder_agent.run("Build an agent that can tell me about Toronto.")async for event in handler.stream_events(): if isinstance(event, ToolCallResult): print( f"Called tool {event.tool_name} with input {event.tool_kwargs}\nGot output: {event.tool_output}" )
result = await handlerprint(f"Result: {result}")
Called tool create_system_prompt with input {'task': 'Tell me about Toronto'}Got output: "Generate a brief summary about Toronto, including its history, culture, landmarks, and notable features."Called tool get_tools with input {'task': 'Tell me about Toronto'}Got output: ['Toronto']Called tool create_agent with input {'system_prompt': 'Generate a brief summary about Toronto, including its history, culture, landmarks, and notable features.', 'tool_names': ['Toronto']}Got output: Agent created successfully.Result: I have created an agent that can provide information about Toronto, including its history, culture, landmarks, and notable features. You can now ask the agent any questions you have about Toronto!
city_agent = agent_cache["agent"]
response = await city_agent.run("Tell me about the parks in Toronto")print(str(response))
Toronto is home to a diverse array of parks and public spaces, offering both urban and natural environments. Key downtown parks include Allan Gardens, Christie Pits, and Trinity Bellwoods Park. For waterfront views, Tommy Thompson Park and the Toronto Islands are popular destinations. In the city's outer areas, large parks like High Park, Humber Bay Park, and Morningside Park provide expansive green spaces. Additionally, parts of Rouge National Urban Park, the largest urban park in North America, are located within Toronto. The city also features notable squares such as Nathan Phillips Square, Yonge–Dundas Square, and Harbourfront Square. Approximately 12.5% of Toronto's land is dedicated to parkland, offering facilities for various activities, including winter sports like ice skating and skiing.