Vector Memory
NOTE: This example of memory is deprecated in favor of the newer and more flexible Memory class. See the latest docs.
The vector memory module uses vector search (backed by a vector db) to retrieve relevant conversation items given a user input.
This notebook shows you how to use the VectorMemory class. We show you how to use its individual functions. A typical usecase for vector memory is as a long-term memory storage of chat messages. You can
Initialize and Experiment with Memory Module
Section titled “Initialize and Experiment with Memory Module”Here we initialize a raw memory module and demonstrate its functions - to put and retrieve from ChatMessage objects.
- Note that retriever_kwargsis the same args you’d specify on theVectorIndexRetrieveror fromindex.as_retriever(..).
from llama_index.core.memory import VectorMemoryfrom llama_index.embeddings.openai import OpenAIEmbedding
vector_memory = VectorMemory.from_defaults(    vector_store=None,  # leave as None to use default in-memory vector store    embed_model=OpenAIEmbedding(),    retriever_kwargs={"similarity_top_k": 1},)from llama_index.core.llms import ChatMessage
msgs = [    ChatMessage.from_str("Jerry likes juice.", "user"),    ChatMessage.from_str("Bob likes burgers.", "user"),    ChatMessage.from_str("Alice likes apples.", "user"),]# load into memoryfor m in msgs:    vector_memory.put(m)# retrieve from memorymsgs = vector_memory.get("What does Jerry like?")msgs[ChatMessage(role=<MessageRole.USER: 'user'>, content='Jerry likes juice.', additional_kwargs={})]vector_memory.reset()Now let’s try resetting and trying again. This time, we’ll add an assistant message. Note that user/assistant messages are bundled by default.
msgs = [    ChatMessage.from_str("Jerry likes burgers.", "user"),    ChatMessage.from_str("Bob likes apples.", "user"),    ChatMessage.from_str("Indeed, Bob likes apples.", "assistant"),    ChatMessage.from_str("Alice likes juice.", "user"),]vector_memory.set(msgs)msgs = vector_memory.get("What does Bob like?")msgs[ChatMessage(role=<MessageRole.USER: 'user'>, content='Bob likes apples.', additional_kwargs={}), ChatMessage(role=<MessageRole.ASSISTANT: 'assistant'>, content='Indeed, Bob likes apples.', additional_kwargs={})]