Skip to content

Google AlloyDB for PostgreSQL - `AlloyDBDocumentStore` & `AlloyDBIndexStore`

AlloyDB is a fully managed relational database service that offers high performance, seamless integration, and impressive scalability. AlloyDB is 100% compatible with PostgreSQL. Extend your database application to build AI-powered experiences leveraging AlloyDB’s LlamaIndex integrations.

This notebook goes over how to use AlloyDB for PostgreSQL to store documents and indexes with the AlloyDBDocumentStore and AlloyDBIndexStore classes.

Learn more about the package on GitHub.

Open In Colab

To run this notebook, you will need to do the following:

Install the integration library, llama-index-alloydb-pg, and the library for the embedding service, llama-index-embeddings-vertex.

%pip install --upgrade --quiet llama-index-alloydb-pg llama-index-llms-vertex llama-index

Colab only: Uncomment the following cell to restart the kernel or use the button to restart the kernel. For Vertex AI Workbench you can restart the terminal using the button on top.

# # Automatically restart kernel after installs so that your environment can access the new packages
# import IPython
# app = IPython.Application.instance()
# app.kernel.do_shutdown(True)

Authenticate to Google Cloud as the IAM user logged into this notebook in order to access your Google Cloud Project.

  • If you are using Colab to run this notebook, use the cell below and continue.
  • If you are using Vertex AI Workbench, check out the setup instructions here.
from google.colab import auth
auth.authenticate_user()

Set your Google Cloud project so that you can leverage Google Cloud resources within this notebook.

If you don’t know your project ID, try the following:

# @markdown Please fill in the value below with your Google Cloud project ID and then run the cell.
PROJECT_ID = "my-project-id" # @param {type:"string"}
# Set the project id
!gcloud config set project {PROJECT_ID}

Find your database values, in the AlloyDB Instances page.

# @title Set Your Values Here { display-mode: "form" }
REGION = "us-central1" # @param {type: "string"}
CLUSTER = "my-cluster" # @param {type: "string"}
INSTANCE = "my-primary" # @param {type: "string"}
DATABASE = "my-database" # @param {type: "string"}
TABLE_NAME = "document_store" # @param {type: "string"}
USER = "postgres" # @param {type: "string"}
PASSWORD = "my-password" # @param {type: "string"}

One of the requirements and arguments to establish AlloyDB as a document store is a AlloyDBEngine object. The AlloyDBEngine configures a connection pool to your AlloyDB database, enabling successful connections from your application and following industry best practices.

To create a AlloyDBEngine using AlloyDBEngine.from_instance() you need to provide only 5 things:

  1. project_id : Project ID of the Google Cloud Project where the AlloyDB instance is located.
  2. region : Region where the AlloyDB instance is located.
  3. cluster: The name of the AlloyDB cluster.
  4. instance : The name of the AlloyDB instance.
  5. database : The name of the database to connect to on the AlloyDB instance.

By default, IAM database authentication will be used as the method of database authentication. This library uses the IAM principal belonging to the Application Default Credentials (ADC) sourced from the environment.

Optionally, built-in database authentication using a username and password to access the AlloyDB database can also be used. Just provide the optional user and password arguments to AlloyDBEngine.from_instance():

  • user : Database user to use for built-in database authentication and login
  • password : Database password to use for built-in database authentication and login.

Note: This tutorial demonstrates the async interface. All async methods have corresponding sync methods.

from llama_index_alloydb_pg import AlloyDBEngine
engine = await AlloyDBEngine.afrom_instance(
project_id=PROJECT_ID,
region=REGION,
cluster=CLUSTER,
instance=INSTANCE,
database=DATABASE,
user=USER,
password=PASSWORD,
)

To create an AlloyDBEngine for AlloyDB Omni, you will need a connection url. AlloyDBEngine.from_connection_string first creates an async engine and then turns it into an AlloyDBEngine. Here is an example connection with the asyncpg driver:

# Replace with your own AlloyDB Omni info
OMNI_USER = "my-omni-user"
OMNI_PASSWORD = ""
OMNI_HOST = "127.0.0.1"
OMNI_PORT = "5432"
OMNI_DATABASE = "my-omni-db"
connstring = f"postgresql+asyncpg://{OMNI_USER}:{OMNI_PASSWORD}@{OMNI_HOST}:{OMNI_PORT}/{OMNI_DATABASE}"
engine = AlloyDBEngine.from_connection_string(connstring)

The AlloyDBDocumentStore class requires a database table. The AlloyDBEngine engine has a helper method init_doc_store_table() that can be used to create a table with the proper schema for you.

await engine.ainit_doc_store_table(
table_name=TABLE_NAME,
)

You can also specify a schema name by passing schema_name wherever you pass table_name.

SCHEMA_NAME = "my_schema"
await engine.ainit_doc_store_table(
table_name=TABLE_NAME,
schema_name=SCHEMA_NAME,
)
from llama_index_alloydb_pg import AlloyDBDocumentStore
doc_store = await AlloyDBDocumentStore.create(
engine=engine,
table_name=TABLE_NAME,
# schema_name=SCHEMA_NAME
)
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
print("Document ID:", documents[0].doc_id)
from llama_index.core.node_parser import SentenceSplitter
nodes = SentenceSplitter().get_nodes_from_documents(documents)
from llama_index_alloydb_pg import AlloyDBIndexStore
INDEX_TABLE_NAME = "index_store"
await engine.ainit_index_store_table(
table_name=INDEX_TABLE_NAME,
)
index_store = await AlloyDBIndexStore.create(
engine=engine,
table_name=INDEX_TABLE_NAME,
# schema_name=SCHEMA_NAME
)
from llama_index.core import StorageContext
storage_context = StorageContext.from_defaults(
docstore=doc_store, index_store=index_store
)
storage_context.docstore.add_documents(nodes)

The Document Store can be used with multiple indexes. Each index uses the same underlying nodes.

from llama_index.core import Settings, SimpleKeywordTableIndex, SummaryIndex
from llama_index.llms.vertex import Vertex
Settings.llm = Vertex(model="gemini-1.5-flash", project=PROJECT_ID)
summary_index = SummaryIndex(nodes, storage_context=storage_context)
keyword_table_index = SimpleKeywordTableIndex(
nodes, storage_context=storage_context
)
query_engine = summary_index.as_query_engine()
response = query_engine.query("What did the author do?")
print(response)

The Document Store can be used with multiple indexes. Each index uses the same underlying nodes.

# note down index IDs
list_id = summary_index.index_id
keyword_id = keyword_table_index.index_id
from llama_index.core import load_index_from_storage
# re-create storage context
storage_context = StorageContext.from_defaults(
docstore=doc_store, index_store=index_store
)
# load indices
summary_index = load_index_from_storage(
storage_context=storage_context, index_id=list_id
)
keyword_table_index = load_index_from_storage(
storage_context=storage_context, index_id=keyword_id
)