Langchain Output Parsing
Download Data
%pip install llama-index-llms-openai
!mkdir -p 'data/paul_graham/'!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
Will not apply HSTS. The HSTS database must be a regular and non-world-writable file.ERROR: could not open HSTS store at '/home/loganm/.wget-hsts'. HSTS will be disabled.--2023-12-11 10:24:04-- https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txtResolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.109.133, 185.199.108.133, ...Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected.HTTP request sent, awaiting response... 200 OKLength: 75042 (73K) [text/plain]Saving to: ‘data/paul_graham/paul_graham_essay.txt’
data/paul_graham/pa 100%[===================>] 73.28K --.-KB/s in 0.04s
2023-12-11 10:24:04 (1.74 MB/s) - ‘data/paul_graham/paul_graham_essay.txt’ saved [75042/75042]
Load documents, build the VectorStoreIndex
Section titled “Load documents, build the VectorStoreIndex”import loggingimport sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import VectorStoreIndex, SimpleDirectoryReaderfrom IPython.display import Markdown, display
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
# load documentsdocuments = SimpleDirectoryReader("./data/paul_graham/").load_data()
index = VectorStoreIndex.from_documents(documents, chunk_size=512)
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Define Query + Langchain Output Parser
Section titled “Define Query + Langchain Output Parser”from llama_index.core.output_parsers import LangchainOutputParserfrom langchain.output_parsers import StructuredOutputParser, ResponseSchema
Define custom QA and Refine Prompts
response_schemas = [ ResponseSchema( name="Education", description=( "Describes the author's educational experience/background." ), ), ResponseSchema( name="Work", description="Describes the author's work experience/background.", ),]
lc_output_parser = StructuredOutputParser.from_response_schemas( response_schemas)output_parser = LangchainOutputParser(lc_output_parser)
from llama_index.core.prompts.default_prompts import ( DEFAULT_TEXT_QA_PROMPT_TMPL,)
# take a look at the new QA template!fmt_qa_tmpl = output_parser.format(DEFAULT_TEXT_QA_PROMPT_TMPL)print(fmt_qa_tmpl)
Context information is below.---------------------{context_str}---------------------Given the context information and not prior knowledge, answer the query.Query: {query_str}Answer:
The output should be a markdown code snippet formatted in the following schema, including the leading and trailing "```json" and "```":
```json{{ "Education": string // Describes the author's educational experience/background. "Work": string // Describes the author's work experience/background.}}```
Query Index
Section titled “Query Index”from llama_index.llms.openai import OpenAI
llm = OpenAI(output_parser=output_parser)
query_engine = index.as_query_engine( llm=llm,)response = query_engine.query( "What are a few things the author did growing up?",)
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
print(response)
{'Education': 'The author did not plan to study programming in college, but initially planned to study philosophy.', 'Work': 'Growing up, the author worked on writing short stories and programming. They wrote simple games, a program to predict rocket heights, and a word processor.'}