Databricks Vector Search
Databricks Vector Search is a vector database that is built into the Databricks Intelligence Platform and integrated with its governance and productivity tools. Full docs here: https://docs.databricks.com/en/generative-ai/vector-search.html
Install llama-index and databricks-vectorsearch. You must be inside a Databricks runtime to use the Vector Search python client.
%pip install llama-index llama-index-vector-stores-databricks%pip install databricks-vectorsearchImport databricks dependencies
from databricks.vector_search.client import (    VectorSearchIndex,    VectorSearchClient,)Import LlamaIndex dependencies
from llama_index.core import (    VectorStoreIndex,    SimpleDirectoryReader,    ServiceContext,    StorageContext,)from llama_index.vector_stores.databricks import DatabricksVectorSearchLoad example data
!mkdir -p 'data/paul_graham/'!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'Read the data
# load documentsdocuments = SimpleDirectoryReader("./data/paul_graham/").load_data()print(f"Total documents: {len(documents)}")print(f"First document, id: {documents[0].doc_id}")print(f"First document, hash: {documents[0].hash}")print(    "First document, text"    f" ({len(documents[0].text)} characters):\n{'='*20}\n{documents[0].text[:360]} ...")Create a Databricks Vector Search endpoint which will serve the index
# Create a vector search endpointclient = VectorSearchClient()client.create_endpoint(    name="llamaindex_dbx_vector_store_test_endpoint", endpoint_type="STANDARD")Create the Databricks Vector Search index, and build it from the documents
# Create a vector search index# it must be placed inside a Unity Catalog-enabled schema
# We'll use self-managed embeddings (i.e. managed by LlamaIndex) rather than a Databricks-managed indexdatabricks_index = client.create_direct_access_index(    endpoint_name="llamaindex_dbx_vector_store_test_endpoint",    index_name="my_catalog.my_schema.my_test_table",    primary_key="my_primary_key_name",    embedding_dimension=1536,  # match the embeddings model dimension you're going to use    embedding_vector_column="my_embedding_vector_column_name",  # you name this anything you want - it'll be picked up by the LlamaIndex class    schema={        "my_primary_key_name": "string",        "my_embedding_vector_column_name": "array<double>",        "text": "string",  # one column must match the text_column in the DatabricksVectorSearch instance created below; this will hold the raw node text,        "doc_id": "string",  # one column must contain the reference document ID (this will be populated by LlamaIndex automatically)        # add any other metadata you may have in your nodes (Databricks Vector Search supports metadata filtering)        # NOTE THAT THESE FIELDS MUST BE ADDED EXPLICITLY TO BE USED FOR METADATA FILTERING    },)
databricks_vector_store = DatabricksVectorSearch(    index=databricks_index,    text_column="text",    columns=None,  # YOU MUST ALSO RECORD YOUR METADATA FIELD NAMES HERE)  # text_column is required for self-managed embeddingsstorage_context = StorageContext.from_defaults(    vector_store=databricks_vector_store)index = VectorStoreIndex.from_documents(    documents, storage_context=storage_context)Query the index
query_engine = index.as_query_engine()response = query_engine.query("Why did the author choose to work on AI?")
print(response.response)