Skip to content

Getting Started with LlamaSheets

LlamaSheets is a new beta API for extracting tables out of messy spreadsheets. A critical step in document understanding is normalizing inputs. Using the LlamaSheets API, it will

  1. Intelligently identify tables per spreadsheet
  2. Isolate and extract each table in a spreadsheet
  3. Output them as Parquet files, a portable format supported by many languages that retains type information. For example, you can load these directly as dataframes with Pandas in Python.
  4. Generates additional metadata about the tables (extracted location) and spreadsheets (titles, descriptions) to assist in downstream flows.

The Python SDK provides an end-to-end method across multiple API calls to complete the extraction.

from llama_cloud_services.beta.sheets import LlamaSheets, SpreadsheetParsingConfig
client = LlamaSheets(api_key="...")
results = await client.aextract_tables(
"path_to_file.xlsx", # Supports paths, bytes, and streams
config=SpreadsheetParsingConfig(
sheet_names=None, # Parse the default sheet only
generate_additional_metadata=True, # Generate titles/descriptions per sheet
)
)
# Download parquet files
file_bytes = await client.adownload_table_result(
results.job_id,
results.tables[0].id,
result_type="table", # can be `table` or `cell_metadata`
)
# Download parquet files and convert to pandas dataframes
df = await client.adownload_table_as_dataframe(
results.job_id,
results.tables[0].id,
result_type="table",
)

Using the LlamaSheets API for table extraction generally consists of 4 main steps.

Below, we detail each step using both the Python SDK and raw HTTP calls.

First, upload a file, and get a File ID:

from llama_cloud_services.beta.sheets import LlamaSheets
# Initialize the client
client = LlamaSheets(api_key="your_api_key")
# Upload a file
file_response = await client.aupload_file("path/to/your/spreadsheet.xlsx")
print(f"File ID: {file_response.id}")

Using the File ID, you can create a job for table extraction to get a job ID:

from llama_cloud_services.beta.sheets.types import SpreadsheetParsingConfig
# Create a job with optional configuration
config = SpreadsheetParsingConfig(
sheet_names=None, # Parse all sheets (default)
generate_additional_metadata=True # Generate extra metadata
)
job = await client.acreate_job(file_id=file_response.id, config=config)
print(f"Job ID: {job.id}")
print(f"Status: {job.status}")

You can also pass the config as a dict:

job = await client.acreate_job(
file_id=file_response.id,
config={"generate_additional_metadata": True}
)

Now that you have a job ID, you can wait for the job to finish:

# Wait for the job to complete (polls automatically)
job_result = await client.await_for_completion(job_id=job.id)
print(f"Job Status: {job_result.status}")
# Access extracted tables metadata
if job_result.tables:
print(f"Found {len(job_result.tables)} table(s)")
for table in job_result.tables:
print(f" - Table ID: {table.table_id}")
print(f" Sheet: {table.sheet_name}")
print(f" Location: {table.table_location}")
for worksheet_metadata in job_result.worksheet_metadata:
print(f"Worksheet Title: {worksheet_metadata.title}")
print(f"Worksheet Description: {worksheet_metadata.description}")

Alternatively, you can manually poll:

while True:
job_result = await client.aget_job(job_id=job.id, include_results_metadata=True)
if job_result.status in ["SUCCESS", "PARTIAL_SUCCESS", "ERROR", "FAILURE"]:
break
print(f"Status: {job_result.status}")
await asyncio.sleep(5)

With a completed job, you can download the generated Parquet file and read any additional metadata about the job result:

from llama_cloud_services.beta.sheets.types import SpreadsheetResultType
import pandas as pd
# Download a table directly as a pandas DataFrame
table_id = job_result.tables[0].table_id
df = await client.adownload_table_as_dataframe(
job_id=job.id,
table_id=table_id,
result_type=SpreadsheetResultType.TABLE
)
print(f"Table shape: {df.shape}")
print(df.head())
# Optionally, download cell metadata
metadata_df = await client.adownload_table_as_dataframe(
job_id=job.id,
table_id=table_id,
result_type=SpreadsheetResultType.CELL_METADATA
)
print(f"Metadata shape: {metadata_df.shape}")

You can also download raw parquet bytes:

# Download as raw bytes
parquet_bytes = await client.adownload_table_result(
job_id=job.id,
table_id=table_id,
result_type=SpreadsheetResultType.TABLE
)
# Save to file
with open("table.parquet", "wb") as f:
f.write(parquet_bytes)

When a LlamaSheets job completes successfully, you receive rich structured data about the extracted tables. This section explains the different components of the output.

The job result object contains:

{
"id": "job-id",
"status": "SUCCESS",
"file_id": "original-file-id",
"config": { /* your parsing config */ },
"created_at": "2024-01-01T00:00:00Z",
"updated_at": "2024-01-01T00:05:00Z",
"tables": [
{
"table_id": "uuid-here",
"sheet_name": "Sheet1",
"table_location": "A2:E11",
"metadata_json": null
}
],
"worksheet_metadata": [
{
"sheet_name": "Sheet1",
"title": "Sales Data Q1 2024",
"description": "Quarterly sales figures with revenue, units sold, and regional breakdowns"
}
],
"errors": []
}

Key fields:

  • tables: Array of extracted tables with their IDs and locations
  • worksheet_metadata: Generated titles and descriptions for each sheet (when generate_additional_metadata: true)
  • status: One of SUCCESS, PARTIAL_SUCCESS, ERROR, or FAILURE

Each extracted table is saved as a Parquet file containing the normalized table data. Parquet is a columnar storage format that:

  • Preserves data types (dates, numbers, strings, booleans)
  • Is highly efficient and compressed
  • Can be read by pandas, polars, DuckDB, and many other tools

Example table structure:

import pandas as pd
df = pd.read_parquet("table.parquet")
print(df.head())
# Output:
# col_0 col_1 col_2 col_3 col_4
# 0 44 -124.6 Value_0_2 2020-01-01 False
# 1 153 -34.4 Value_1_2 2020-01-02 True
# 2 184 34.4 Value_2_2 2020-01-03 False

In addition to the table data, you can download rich cell-level metadata that provides detailed information about each cell in the extracted table. This is particularly useful for:

  • Understanding cell formatting and styling
  • Analyzing table structure and layout
  • Detecting data types and patterns
  • Preserving formatting for downstream processing

Available metadata fields:

Position & Layout:

  • row_number, column_number: Cell coordinates
  • coordinate: Excel-style cell reference (e.g., “A1”)
  • relative_row_position, relative_column_position: Normalized position (0.0 to 1.0)
  • is_in_first_row, is_in_last_row, is_in_first_column, is_in_last_column: Boolean flags
  • distance_from_origin, distance_from_center: Geometric distances

Formatting:

  • font_bold, font_italic: Font style flags
  • font_size: Font size in points
  • font_color_rgb, background_color_rgb: Color values
  • has_border, border_style_score: Border information
  • horizontal_alignment, vertical_alignment: Alignment values
  • text_wrap: Text wrapping setting

Cell Properties:

  • is_merged_cell: Whether the cell is part of a merged range
  • horizontal_size, vertical_size: Cell dimensions
  • alignment_indent: Indentation level

Data Type Detection:

  • data_type: Detected type (Number, Text, Date, etc.)
  • is_date_like: Boolean flag for date detection
  • is_percentage, is_currency: Boolean flags for special number formats
  • number_format_category: Excel number format category
  • text_length: Length of text content
  • has_special_chars: Whether text contains special characters

Content:

  • cell_value: Processed cell value
  • raw_cell_value: Original raw value

Clustering & Grouping:

  • group, sub_group: Cell grouping identifiers
  • l0_category, f_group: Hierarchical categorization

Example metadata usage:

import pandas as pd
# Load cell metadata
metadata_df = pd.read_parquet("metadata.parquet")
# Find all header cells (first row)
headers = metadata_df[metadata_df['is_in_first_row'] == True]
# Find all bolded cells (likely headers or emphasis)
bold_cells = metadata_df[metadata_df['font_bold'] == True]
# Find date columns
date_cells = metadata_df[metadata_df['is_date_like'] == True]
date_columns = date_cells['column_number'].unique()
# Analyze formatting patterns
print(f"Font sizes used: {metadata_df['font_size'].unique()}")
print(f"Data types present: {metadata_df['data_type'].unique()}")

You can download two types of parquet files for each extracted table:

  1. Table data (result_type="table"): The actual table content
  2. Cell metadata (result_type="cell_metadata"): Rich formatting and position metadata

Both are stored as parquet files and can be easily loaded into pandas DataFrames for analysis.

Beyond just extracting the tables, there are many downstream use-cases that can wrap these outputs.