Quick Start
Self-Hosting Documentation Access
This section requires a password to access. Interested in self-hosting? Contact sales to learn more.
Before You Get Started
Section titled “Before You Get Started”Welcome to LlamaCloud! Before you get started, please make sure you have the following prerequisites:
- LlamaCloud License Key. To obtain a LlamaCloud License Key, please contact us at support@llamaindex.ai.
- Kubernetes cluster
>=1.28.0and a working installation ofkubectl. - Helm
v3.7.0+- To install Helm, please refer to the official Helm Documentation.
- OpenAI API Key or Azure OpenAI Credentials. Configuring OpenAI credentials is the easiest way to get started with your deployment.
- LlamaCloud tries to meet you at your organization’s needs and supports configuring more than OpenAI LLMs in including Anthropic, Bedrock, Vertex AI, and more.
- Please refer to the docs in the Configuration section of the sidebar to learn more about configuring other LLMs.
- File Storage: LlamaCloud must leverage your cloud provider’s object storage to store files.
- Please follow the File Storage documentation to configure your deployment.
- Authentication Settings:
- OIDC. OIDC is our recommended authentication mode for production deployments.
- Basic Auth (email/password): As of July 24th, 2025 (
v0.5.0), we support bothoidcandbasicauthentication methods. This is a simpler authentication mode more suitable for staging deployments. - For more information, please refer to the Authentication Modes documentation.
- Credentials to External Services (See below).
External Services
Section titled “External Services”LLamaCloud requires the following external services to be available: Postgres, MongoDB, RabbitMQ and Redis.
Please follow the Database and Queues documentation to configure these services for your deployment.
Hardware Requirements
Section titled “Hardware Requirements”- Linux Instances running x86 CPUs
- We currently only linux/amd64 images. arm64 is not supported at this moment.
- Ubuntu >=22.04
- >=12 vCPUs
- >=80Gbi Memory
Warning #1: LlamaParse, LlamaIndex’s proprietary document parser, can be a very resource-intensive deployment to run, especially if you want to maximize performance.
Warning #2: The base CPU/memory requirements may increase if you are running containerized deployments of LlamaCloud dependencies. (More information in the following section)
Configure and Install Your Deployment
Section titled “Configure and Install Your Deployment”This section will walk you through the steps to configure a minimal LlamaCloud deployment.
Minimal values.yaml configuration
Section titled “Minimal values.yaml configuration”To get a minimal LlamaCloud deployment up and running, you can create a values.yaml file with the following content:
license: key: <LLAMACLOUD-LICENSE-KEY>
postgresql: host: "postgresql" port: "5432" database: "llamacloud" username: <POSTGRES-USERNAME> password: <POSTGRES-PASSWORD>
mongodb: host: "mongodb" port: "27017" username: <MONGODB-USERNAME> password: <MONGODB-PASSWORD>
rabbitmq: scheme: "amqp" host: "rabbitmq" port: "5672" username: <RABBITMQ-USERNAME> password: <RABBITMQ-PASSWORD>
redis: scheme: "redis" host: "redis-master" port: "6379" db: 0
config: llms: openAi: apiKey: <OPENAI-APIKEY>
frontend: enabled: true parseOcr: gpu: true
authentication: oidc: enabled: true discoveryUrl: "https://login.microsoftonline.com/<TENANT-ID>/v2.0/.well-known/openid-configuration" clientId: <CLIENT-ID> clientSecret: <CLIENT-SECRET> license: key: <LLAMACLOUD-LICENSE-KEY>
postgresql: host: "postgresql" port: "5432" database: "llamacloud" username: <POSTGRES-USERNAME> password: <POSTGRES-PASSWORD>
mongodb: host: "mongodb" port: "27017" username: <MONGODB-USERNAME> password: <MONGODB-PASSWORD>
rabbitmq: scheme: "amqp" host: "rabbitmq" port: "5672" username: <RABBITMQ-USERNAME> password: <RABBITMQ-PASSWORD>
redis: scheme: "redis" host: "redis-master" port: "6379" db: 0
config: llms: azureOpenAi: secret: "" deployments: []
frontend: enabled: true parseOcr: gpu: true
authentication: oidc: enabled: true discoveryUrl: "https://login.microsoftonline.com/<TENANT-ID>/v2.0/.well-known/openid-configuration" clientId: <CLIENT-ID> clientSecret: <CLIENT-SECRET> license: key: <LLAMACLOUD-LICENSE-KEY>
postgresql: host: "postgresql" port: "5432" database: "llamacloud" username: <POSTGRES-USERNAME> password: <POSTGRES-PASSWORD>
mongodb: host: "mongodb" port: "27017" username: <MONGODB-USERNAME> password: <MONGODB-PASSWORD>
rabbitmq: scheme: "amqp" host: "rabbitmq" port: "5672" username: <RABBITMQ-USERNAME> password: <RABBITMQ-PASSWORD>
redis: scheme: "redis" host: "redis-master" port: "6379" db: 0
config: llms: openAi: apiKey: <OPENAI-APIKEY>
frontend: enabled: true parseOcr: gpu: true
authentication: basicAuth: enabled: true validEmailDomain: "llamaindex.ai" # this is optional, but recommended for production deployments jwtSecret: <YOUR-JWT-SECRET> license: key: <LLAMACLOUD-LICENSE-KEY>
postgresql: host: "postgresql" port: "5432" database: "llamacloud" username: <POSTGRES-USERNAME> password: <POSTGRES-PASSWORD>
mongodb: host: "mongodb" port: "27017" username: <MONGODB-USERNAME> password: <MONGODB-PASSWORD>
rabbitmq: scheme: "amqp" host: "rabbitmq" port: "5672" username: <RABBITMQ-USERNAME> password: <RABBITMQ-PASSWORD>
redis: scheme: "redis" host: "redis-master" port: "6379" db: 0
config: llms: azureOpenAi: secret: "" deployments: []
frontend: enabled: true parseOcr: gpu: true
authentication: basicAuth: enabled: true validEmailDomain: "llamaindex.ai" # this is optional, but recommended for production deployments jwtSecret: <YOUR-JWT-SECRET>Install the Helm chart
Section titled “Install the Helm chart”# Add the Helm repositoryhelm repo add llamaindex https://run-llama.github.io/helm-charts
# Update your local Helm chart cachehelm repo update
# Create the llamacloud namespacekubectl create ns llamacloud
# Install the Helm charthelm install llamacloud llamaindex/llamacloud -f values.yaml --namespace llamacloudIf you want to install a specific version of the Helm chart, you can specify the version:
helm install llamacloud llamaindex/llamacloud --version x.y.z -f values.yaml --namespace llamacloudValidate the installation
Section titled “Validate the installation”After installation, you will see the following output:
NNAME: llamacloudLAST DEPLOYED: Tue Nov 18 10:12:03 2025NAMESPACE: llamacloudSTATUS: deployedREVISION: 1TEST SUITE: NoneNOTES:Welcome to LlamaCloud!
View your deployment with the following:
kubectl --namespace default get pods -n llamacloud
To view LlamaCloud UI in your browser: Run the following command:
kubectl --namespace llamacloud port-forward svc/llamacloud-web 3000:80If you list the pods with kubectl get pods -n llamacloud, you should see the following pods:
NAME READY STATUS RESTARTS AGEllamacloud-64f468d5cf-sqjq6 1/1 Running 0 2m56sllamacloud-layout-6d97b84c58-rld8x 1/1 Running 0 2m56sllamacloud-ocr-5cc459bdd-99xgt 1/1 Running 0 2m56sllamacloud-operator-5d4c58b854-dwnjk 1/1 Running 0 2m56sllamacloud-parse-7ffbc786b5-r98w2 1/1 Running 0 2m56sllamacloud-telemetry-5fc9ff8c67-fv8xj 1/1 Running 0 2m56sllamacloud-web-b88d95588-rprhc 1/1 Running 0 2m56sllamacloud-worker-58b95ccc6f-vqmgx 1/1 Running 0 2m56sPort forward the frontend service to access the LlamaCloud UI:
kubectl --namespace llamacloud port-forward svc/llamacloud-web 3000:80Open your web browser and navigate to http://localhost:3000. You should see the LlamaCloud UI.
Next Steps
Section titled “Next Steps”Choose your deployment approach based on your needs:
🌩️ Cloud-Specific Deployment Guides
Section titled “🌩️ Cloud-Specific Deployment Guides”Recommended for most users - Complete, opinionated guides for major cloud providers:
📋 Choose Your Cloud Provider →
- Azure: AKS + Azure-native services with Microsoft Entra ID
- AWS: EKS + AWS-native services (coming soon)
- GCP: GKE + GCP-native services (coming soon)
These guides provide end-to-end instructions using cloud-native services and enterprise authentication.
⚙️ Custom Configuration Guides
Section titled “⚙️ Custom Configuration Guides”For advanced users with specific requirements or non-standard setups:
- Authentication Modes - Configure OIDC, basic auth, or custom authentication
- File Storage - Set up S3, Azure Blob, GCS, or other storage
- Database and Queues - Configure external databases and message queues
- LLM Integrations - Set up OpenAI, Azure OpenAI, Bedrock, or other LLMs
- Ingress Configuration - Load balancers, SSL, and networking
- Autoscaling Configuration - HPA and KEDA-based scaling for services
- Service Tuning - Performance and scaling configurations
Use these guides if you need custom integrations, have specific compliance requirements, or want to mix and match different services.
🚰 Data Sink Configuration
Section titled “🚰 Data Sink Configuration”Configure at least one Data Sink to store the vector embeddings of your documents.
More Examples and Guides
Section titled “More Examples and Guides”- there are many more configuration options available for each component. to see the full values.yaml specification, please refer to the values.yaml file in the helm chart repository.
- To see how common scenarios are configured, please refer to the
values.yamlexamples directory in the Helm chart repository. - Similarly, we have other configuration docs available there too for more advanced configurations.