Skip to content

DeepInfra

With this integration, you can use the DeepInfra embeddings model to get embeddings for your text data. Here is the link to the embeddings models.

First, you need to sign up on the DeepInfra website and get the API token. You can copy model_ids from the model cards and start using them in your code.

!pip install llama-index llama-index-embeddings-deepinfra
from dotenv import load_dotenv, find_dotenv
from llama_index.embeddings.deepinfra import DeepInfraEmbeddingModel
_ = load_dotenv(find_dotenv())
model = DeepInfraEmbeddingModel(
model_id="BAAI/bge-large-en-v1.5", # Use custom model ID
api_token="YOUR_API_TOKEN", # Optionally provide token here
normalize=True, # Optional normalization
text_prefix="text: ", # Optional text prefix
query_prefix="query: ", # Optional query prefix
)
response = model.get_text_embedding("hello world")
print(response)
texts = ["hello world", "goodbye world"]
response_batch = model.get_text_embedding_batch(texts)
print(response_batch)
query_response = model.get_query_embedding("hello world")
print(query_response)
async def main():
text = "hello world"
async_response = await model.aget_text_embedding(text)
print(async_response)
if __name__ == "__main__":
import asyncio
asyncio.run(main())

For any questions or feedback, please contact us at feedback@deepinfra.com.