DeepInfra
With this integration, you can use the DeepInfra embeddings model to get embeddings for your text data. Here is the link to the embeddings models.
First, you need to sign up on the DeepInfra website and get the API token. You can copy model_ids
from the model cards and start using them in your code.
Installation
Section titled “Installation”!pip install llama-index llama-index-embeddings-deepinfra
Initialization
Section titled “Initialization”from dotenv import load_dotenv, find_dotenvfrom llama_index.embeddings.deepinfra import DeepInfraEmbeddingModel
_ = load_dotenv(find_dotenv())
model = DeepInfraEmbeddingModel( model_id="BAAI/bge-large-en-v1.5", # Use custom model ID api_token="YOUR_API_TOKEN", # Optionally provide token here normalize=True, # Optional normalization text_prefix="text: ", # Optional text prefix query_prefix="query: ", # Optional query prefix)
Synchronous Requests
Section titled “Synchronous Requests”Get Text Embedding
Section titled “Get Text Embedding”response = model.get_text_embedding("hello world")print(response)
Batch Requests
Section titled “Batch Requests”texts = ["hello world", "goodbye world"]response_batch = model.get_text_embedding_batch(texts)print(response_batch)
Query Requests
Section titled “Query Requests”query_response = model.get_query_embedding("hello world")print(query_response)
Asynchronous Requests
Section titled “Asynchronous Requests”Get Text Embedding
Section titled “Get Text Embedding”async def main(): text = "hello world" async_response = await model.aget_text_embedding(text) print(async_response)
if __name__ == "__main__": import asyncio
asyncio.run(main())
For any questions or feedback, please contact us at feedback@deepinfra.com.