Optimum Intel LLMs optimized with IPEX backend
Optimum Intel accelerates Hugging Face pipelines on Intel architectures leveraging Intel Extension for Pytorch, (IPEX) optimizations
Optimum Intel models can be run locally through OptimumIntelLLM
entitiy wrapped by LlamaIndex :
In the below line, we install the packages necessary for this demo:
%pip install llama-index-llms-optimum-intel
Now that we’re set up, let’s play around:
If you’re opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.
!pip install llama-index
from llama_index.llms.optimum_intel import OptimumIntelLLM
def messages_to_prompt(messages): prompt = "" for message in messages: if message.role == "system": prompt += f"<|system|>\n{message.content}</s>\n" elif message.role == "user": prompt += f"<|user|>\n{message.content}</s>\n" elif message.role == "assistant": prompt += f"<|assistant|>\n{message.content}</s>\n"
# ensure we start with a system prompt, insert blank if needed if not prompt.startswith("<|system|>\n"): prompt = "<|system|>\n</s>\n" + prompt
# add final assistant prompt prompt = prompt + "<|assistant|>\n"
return prompt
def completion_to_prompt(completion): return f"<|system|>\n</s>\n<|user|>\n{completion}</s>\n<|assistant|>\n"
Model Loading
Section titled “Model Loading”Models can be loaded by specifying the model parameters using the OptimumIntelLLM
method.
oi_llm = OptimumIntelLLM( model_name="Intel/neural-chat-7b-v3-3", tokenizer_name="Intel/neural-chat-7b-v3-3", context_window=3900, max_new_tokens=256, generate_kwargs={"temperature": 0.7, "top_k": 50, "top_p": 0.95}, messages_to_prompt=messages_to_prompt, completion_to_prompt=completion_to_prompt, device_map="cpu",)
response = oi_llm.complete("What is the meaning of life?")print(str(response))
Streaming
Section titled “Streaming”Using stream_complete
endpoint
response = oi_llm.stream_complete("Who is Mother Teresa?")for r in response: print(r.delta, end="")
Using stream_chat
endpoint
from llama_index.core.llms import ChatMessage
messages = [ ChatMessage( role="system", content="You are an American chef in a small restaurant in New Orleans", ), ChatMessage(role="user", content="What is your dish of the day?"),]resp = oi_llm.stream_chat(messages)
for r in resp: print(r.delta, end="")