Memgraph Property Graph Index
Memgraph is an open source graph database built real-time streaming and fast analysis of your stored data.
Before running Memgraph, ensure you have Docker running in the background. The quickest way to try out Memgraph Platform (Memgraph database + MAGE library + Memgraph Lab) for the first time is running the following command:
For Linux/macOS:
curl https://install.memgraph.com | shFor Windows:
iwr https://windows.memgraph.com | iexFrom here, you can check Memgraphâs visual tool, Memgraph Lab on the http://localhost:3000/ or the desktop version of the app.
%pip install llama-index llama-index-graph-stores-memgraphEnvironment setup
Section titled âEnvironment setupâimport os
os.environ[ "OPENAI_API_KEY"] = "sk-proj-..." # Replace with your OpenAI API keyCreate the data directory and download the Paul Graham essay weâll be using as the input data for this example.
import urllib.request
os.makedirs("data/paul_graham/", exist_ok=True)
url = "https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt"output_path = "data/paul_graham/paul_graham_essay.txt"urllib.request.urlretrieve(url, output_path)import nest_asyncio
nest_asyncio.apply()Read the file, replace single quotes, save the modified content and load the document data using the SimpleDirectoryReader
from llama_index.core import SimpleDirectoryReader
with open(output_path, "r", encoding="utf-8") as file: content = file.read()
with open(output_path, "w", encoding="utf-8") as file: file.write(content)
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()Setup Memgraph connection
Section titled âSetup Memgraph connectionâSet up your graph store class by providing the database credentials.
from llama_index.graph_stores.memgraph import MemgraphPropertyGraphStore
username = "" # Enter your Memgraph username (default "")password = "" # Enter your Memgraph password (default "")url = "" # Specify the connection URL, e.g., 'bolt://localhost:7687'
graph_store = MemgraphPropertyGraphStore( username=username, password=password, url=url,)Index Construction
Section titled âIndex Constructionâfrom llama_index.core import PropertyGraphIndexfrom llama_index.embeddings.openai import OpenAIEmbeddingfrom llama_index.llms.openai import OpenAIfrom llama_index.core.indices.property_graph import SchemaLLMPathExtractor
index = PropertyGraphIndex.from_documents( documents, embed_model=OpenAIEmbedding(model_name="text-embedding-ada-002"), kg_extractors=[ SchemaLLMPathExtractor( llm=OpenAI(model="gpt-3.5-turbo", temperature=0.0) ) ], property_graph_store=graph_store, show_progress=True,)Now that the graph is created, we can explore it in the UI by visiting http://localhost:3000/.
The easiest way to visualize the entire graph is by running a Cypher command similar to this:
MATCH p=()-[]-() RETURN p;This command matches all of the possible paths in the graph and returns entire graph.
To visualize the schema of the graph, visit the Graph schema tab and generate the new schema based on the newly created graph.
To delete an entire graph, use:
MATCH (n) DETACH DELETE n;Querying and retrieval
Section titled âQuerying and retrievalâretriever = index.as_retriever(include_text=False)
# Example query: "What happened at Interleaf and Viaweb?"nodes = retriever.retrieve("What happened at Interleaf and Viaweb?")
# Output resultsprint("Query Results:")for node in nodes: print(node.text)
# Alternatively, using a query enginequery_engine = index.as_query_engine(include_text=True)
# Perform a query and print the detailed responseresponse = query_engine.query("What happened at Interleaf and Viaweb?")print("\nDetailed Query Response:")print(str(response))Loading from an existing graph
Section titled âLoading from an existing graphâIf you have an existing graph (either created with LlamaIndex or otherwise), we can connect to and use it!
NOTE: If your graph was created outside of LlamaIndex, the most useful retrievers will be text to cypher or cypher templates. Other retrievers rely on properties that LlamaIndex inserts.
llm = OpenAI(model="gpt-4", temperature=0.0)kg_extractors = [SchemaLLMPathExtractor(llm=llm)]
index = PropertyGraphIndex.from_existing( property_graph_store=graph_store, kg_extractors=kg_extractors, embed_model=OpenAIEmbedding(model_name="text-embedding-ada-002"), show_progress=True,)