Skip to content

ClickHouse Vector Store

In this notebook we are going to show a quick demo of using the ClickHouseVectorStore.

If you’re opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.

!pip install llama-index
!pip install clickhouse_connect
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from os import environ
import clickhouse_connect
environ["OPENAI_API_KEY"] = "sk-*"
# initialize client
client = clickhouse_connect.get_client(
host="localhost",
port=8123,
username="default",
password="",
)

Load documents, build and store the VectorStoreIndex with ClickHouseVectorStore

Section titled “Load documents, build and store the VectorStoreIndex with ClickHouseVectorStore”

Here we will use a set of Paul Graham essays to provide the text to turn into embeddings, store in a ClickHouseVectorStore and query to find context for our LLM QnA loop.

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.clickhouse import ClickHouseVectorStore
# load documents
documents = SimpleDirectoryReader("../data/paul_graham").load_data()
print("Document ID:", documents[0].doc_id)
print("Number of Documents: ", len(documents))
Document ID: d03ac7db-8dae-4199-bc38-445dec51a534
Number of Documents: 1

Download Data

!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
--2024-02-13 10:08:31-- https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.111.133, 185.199.109.133, 185.199.110.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.111.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 75042 (73K) [text/plain]
Saving to: ‘data/paul_graham/paul_graham_essay.txt’
data/paul_graham/pa 100%[===================>] 73.28K --.-KB/s in 0.003s
2024-02-13 10:08:31 (23.9 MB/s) - ‘data/paul_graham/paul_graham_essay.txt’ saved [75042/75042]

You can process your files individually using SimpleDirectoryReader:

loader = SimpleDirectoryReader("./data/paul_graham/")
documents = loader.load_data()
for file in loader.input_files:
print(file)
# Here is where you would do any preprocessing
data/paul_graham/paul_graham_essay.txt
# initialize with metadata filter and store indexes
from llama_index.core import StorageContext
for document in documents:
document.metadata = {"user_id": "123", "favorite_color": "blue"}
vector_store = ClickHouseVectorStore(clickhouse_client=client)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)

Now ClickHouse vector store supports filter search and hybrid search

You can learn more about query_engine and retriever.

import textwrap
from llama_index.core.vector_stores import ExactMatchFilter, MetadataFilters
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine(
filters=MetadataFilters(
filters=[
ExactMatchFilter(key="user_id", value="123"),
]
),
similarity_top_k=2,
vector_store_query_mode="hybrid",
)
response = query_engine.query("What did the author learn?")
print(textwrap.fill(str(response), 100))
The author learned several things during their time at Interleaf, including the importance of having
technology companies run by product people rather than sales people, the drawbacks of having too
many people edit code, the value of corridor conversations over planned meetings, the challenges of
dealing with big bureaucratic customers, and the importance of being the "entry level" option in a
market.
for document in documents:
index.delete_ref_doc(document.doc_id)