Skip to content

Google Cloud SQL for PostgreSQL - `PostgresVectorStore`

Cloud SQL is a fully managed relational database service that offers high performance, seamless integration, and impressive scalability. It offers MySQL, PostgreSQL, and SQL Server database engines. Extend your database application to build AI-powered experiences leveraging Cloud SQL’s LlamaIndex integrations.

This notebook goes over how to use Cloud SQL for PostgreSQL to store vector embeddings with the PostgresVectorStore class.

Learn more about the package on GitHub.

Open In Colab

To run this notebook, you will need to do the following:

Install the integration library, llama-index-cloud-sql-pg, and the library for the embedding service, llama-index-embeddings-vertex.

%pip install --upgrade --quiet llama-index-cloud-sql-pg llama-index-embeddings-vertex llama-index-llms-vertex llama-index

Colab only: Uncomment the following cell to restart the kernel or use the button to restart the kernel. For Vertex AI Workbench you can restart the terminal using the button on top.

# # Automatically restart kernel after installs so that your environment can access the new packages
# import IPython
# app = IPython.Application.instance()
# app.kernel.do_shutdown(True)

Authenticate to Google Cloud as the IAM user logged into this notebook in order to access your Google Cloud Project.

  • If you are using Colab to run this notebook, use the cell below and continue.
  • If you are using Vertex AI Workbench, check out the setup instructions here.
from google.colab import auth
auth.authenticate_user()

Set your Google Cloud project so that you can leverage Google Cloud resources within this notebook.

If you don’t know your project ID, try the following:

# @markdown Please fill in the value below with your Google Cloud project ID and then run the cell.
PROJECT_ID = "my-project-id" # @param {type:"string"}
# Set the project id
!gcloud config set project {PROJECT_ID}

Find your database values, in the Cloud SQL Instances page.

# @title Set Your Values Here { display-mode: "form" }
REGION = "us-central1" # @param {type: "string"}
INSTANCE = "my-primary" # @param {type: "string"}
DATABASE = "my-database" # @param {type: "string"}
TABLE_NAME = "vector_store" # @param {type: "string"}
USER = "postgres" # @param {type: "string"}
PASSWORD = "my-password" # @param {type: "string"}

One of the requirements and arguments to establish Cloud SQL as a vector store is a PostgresEngine object. The PostgresEngine configures a connection pool to your Cloud SQL database, enabling successful connections from your application and following industry best practices.

To create a PostgresEngine using PostgresEngine.from_instance() you need to provide only 4 things:

  1. project_id : Project ID of the Google Cloud Project where the Cloud SQL instance is located.
  2. region : Region where the Cloud SQL instance is located.
  3. instance : The name of the Cloud SQL instance.
  4. database : The name of the database to connect to on the Cloud SQL instance.

By default, IAM database authentication will be used as the method of database authentication. This library uses the IAM principal belonging to the Application Default Credentials (ADC) sourced from the envionment.

For more informatin on IAM database authentication please see:

Optionally, built-in database authentication using a username and password to access the Cloud SQL database can also be used. Just provide the optional user and password arguments to PostgresEngine.from_instance():

  • user : Database user to use for built-in database authentication and login
  • password : Database password to use for built-in database authentication and login.

Note: This tutorial demonstrates the async interface. All async methods have corresponding sync methods.

from llama_index_cloud_sql_pg import PostgresEngine
engine = await PostgresEngine.afrom_instance(
project_id=PROJECT_ID,
region=REGION,
instance=INSTANCE,
database=DATABASE,
user=USER,
password=PASSWORD,
)

The PostgresVectorStore class requires a database table. The PostgresEngine engine has a helper method init_vector_store_table() that can be used to create a table with the proper schema for you.

await engine.ainit_vector_store_table(
table_name=TABLE_NAME,
vector_size=768, # Vector size for VertexAI model(textembedding-gecko@latest)
)

You can also specify a schema name by passing schema_name wherever you pass table_name.

SCHEMA_NAME = "my_schema"
await engine.ainit_vector_store_table(
table_name=TABLE_NAME,
schema_name=SCHEMA_NAME,
vector_size=768,
)

You can use any Llama Index embeddings model. You may need to enable Vertex AI API to use VertexTextEmbeddings. We recommend setting the embedding model’s version for production, learn more about the Text embeddings models.

# enable Vertex AI API
!gcloud services enable aiplatform.googleapis.com
from llama_index.core import Settings
from llama_index.embeddings.vertex import VertexTextEmbedding
from llama_index.llms.vertex import Vertex
import google.auth
credentials, project_id = google.auth.default()
Settings.embed_model = VertexTextEmbedding(
model_name="textembedding-gecko@003",
project=PROJECT_ID,
credentials=credentials,
)
Settings.llm = Vertex(model="gemini-1.5-flash-002", project=PROJECT_ID)
from llama_index_cloud_sql_pg import PostgresVectorStore
vector_store = await PostgresVectorStore.create(
engine=engine,
table_name=TABLE_NAME,
# schema_name=SCHEMA_NAME
)
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
print("Document ID:", documents[0].doc_id)

Create an index from the vector store by using VectorStoreIndex.

The simplest way to use a Vector Store is to load a set of documents and build an index from them using from_documents.

from llama_index.core import StorageContext, VectorStoreIndex
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context, show_progress=True
)
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do?")
print(response)

A Vector Store can take advantage of relational data to filter similarity searches.

Create a new table with custom metadata columns. You can also re-use an existing table which already has custom columns for a Document’s id, content, embedding, and/or metadata.

from llama_index_cloud_sql_pg import Column
# Set table name
TABLE_NAME = "vectorstore_custom"
# SCHEMA_NAME = "my_schema"
await engine.ainit_vector_store_table(
table_name=TABLE_NAME,
# schema_name=SCHEMA_NAME,
vector_size=768, # VertexAI model: textembedding-gecko@003
metadata_columns=[Column("len", "INTEGER")],
)
# Initialize PostgresVectorStore
custom_store = await PostgresVectorStore.create(
engine=engine,
table_name=TABLE_NAME,
# schema_name=SCHEMA_NAME,
metadata_columns=["len"],
)

Document metadata can provide the LLM and retrieval process with more information. Learn more about different approaches for extracting and adding metadata.

from llama_index.core import Document
fruits = ["apple", "pear", "orange", "strawberry", "banana", "kiwi"]
documents = [
Document(text=fruit, metadata={"len": len(fruit)}) for fruit in fruits
]
storage_context = StorageContext.from_defaults(vector_store=custom_store)
custom_doc_index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context, show_progress=True
)

You can apply pre-filtering to the search results by specifying a filters argument

from llama_index.core.vector_stores.types import (
MetadataFilter,
MetadataFilters,
FilterOperator,
)
filters = MetadataFilters(
filters=[
MetadataFilter(key="len", operator=FilterOperator.GT, value="5"),
],
)
query_engine = custom_doc_index.as_query_engine(filters=filters)
res = query_engine.query("List some fruits")
print(str(res.source_nodes[0].text))

Speed up vector search queries by applying a vector index. Learn more about vector indexes.

from llama_index_cloud_sql_pg.indexes import IVFFlatIndex
index = IVFFlatIndex()
await vector_store.aapply_vector_index(index)
await vector_store.areindex() # Re-index using default index name
await vector_store.adrop_vector_index() # Delete index using default name