DashVector Vector Store
If you’re opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.
%pip install llama-index-vector-stores-dashvector
!pip install llama-index
import loggingimport sysimport os
logging.basicConfig(stream=sys.stdout, level=logging.INFO)logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
Creating a DashVector Collection
Section titled “Creating a DashVector Collection”import dashvector
api_key = os.environ["DASHVECTOR_API_KEY"]client = dashvector.Client(api_key=api_key)
# dimensions are for text-embedding-ada-002client.create("llama-demo", dimension=1536)
{"code": 0, "message": "", "requests_id": "82b969d2-2568-4e18-b0dc-aa159b503c84"}
dashvector_collection = client.get("quickstart")
Download Data
Section titled “Download Data”!mkdir -p 'data/paul_graham/'!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
Load documents, build the DashVectorStore and VectorStoreIndex
Section titled “Load documents, build the DashVectorStore and VectorStoreIndex”from llama_index.core import VectorStoreIndex, SimpleDirectoryReaderfrom llama_index.vector_stores.dashvector import DashVectorStorefrom IPython.display import Markdown, display
INFO:numexpr.utils:Note: NumExpr detected 12 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.Note: NumExpr detected 12 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.INFO:numexpr.utils:NumExpr defaulting to 8 threads.NumExpr defaulting to 8 threads.
# load documentsdocuments = SimpleDirectoryReader("./data/paul_graham").load_data()
# initialize without metadata filterfrom llama_index.core import StorageContext
vector_store = DashVectorStore(dashvector_collection)storage_context = StorageContext.from_defaults(vector_store=vector_store)index = VectorStoreIndex.from_documents( documents, storage_context=storage_context)
Query Index
Section titled “Query Index”# set Logging to DEBUG for more detailed outputsquery_engine = index.as_query_engine()response = query_engine.query("What did the author do growing up?")
display(Markdown(f"<b>{response}</b>"))
The author worked on writing and programming outside of school. They wrote short stories and tried writing programs on the IBM 1401 computer. They also built a microcomputer and started programming on it, writing simple games and a word processor.