Skip to content

Pinecone Vector Store

If you’re opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.

%pip install llama-index llama-index-vector-stores-pinecone
import logging
import sys
import os
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from pinecone import Pinecone, ServerlessSpec
os.environ["PINECONE_API_KEY"] = "..."
os.environ["OPENAI_API_KEY"] = "sk-proj-..."
api_key = os.environ["PINECONE_API_KEY"]
pc = Pinecone(api_key=api_key)
# delete if needed
# pc.delete_index("quickstart")
# dimensions are for text-embedding-ada-002
pc.create_index(
name="quickstart",
dimension=1536,
metric="euclidean",
spec=ServerlessSpec(cloud="aws", region="us-east-1"),
)
# If you need to create a PodBased Pinecone index, you could alternatively do this:
#
# from pinecone import Pinecone, PodSpec
#
# pc = Pinecone(api_key='xxx')
#
# pc.create_index(
# name='my-index',
# dimension=1536,
# metric='cosine',
# spec=PodSpec(
# environment='us-east1-gcp',
# pod_type='p1.x1',
# pods=1
# )
# )
#
pinecone_index = pc.Index("quickstart")

Load documents, build the PineconeVectorStore and VectorStoreIndex

Section titled “Load documents, build the PineconeVectorStore and VectorStoreIndex”
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.pinecone import PineconeVectorStore
from IPython.display import Markdown, display

Download Data

!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
# load documents
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
# initialize without metadata filter
from llama_index.core import StorageContext
if "OPENAI_API_KEY" not in os.environ:
raise EnvironmentError(f"Environment variable OPENAI_API_KEY is not set")
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)

May take a minute or so for the index to be ready!

# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
display(Markdown(f"<b>{response}</b>"))

The author, growing up, worked on writing and programming. They wrote short stories and tried writing programs on an IBM 1401 computer. They later got a microcomputer and started programming more extensively, writing simple games and a word processor.

You can also fetch a list of nodes directly with filters.

from llama_index.core.vector_stores.types import (
MetadataFilter,
MetadataFilters,
FilterOperator,
FilterCondition,
)
filter = MetadataFilters(
filters=[
MetadataFilter(
key="file_path",
value="/Users/loganmarkewich/giant_change/llama_index/docs/docs/examples/vector_stores/data/paul_graham/paul_graham_essay.txt",
operator=FilterOperator.EQ,
)
],
condition=FilterCondition.AND,
)

You can fetch nodes directly with the filters. The below will return all nodes that match the filter.

nodes = vector_store.get_nodes(filters=filter, limit=100)
print(len(nodes))
22

You can also fetch using top-k and filters.

query_engine = index.as_query_engine(similarity_top_k=2, filters=filter)
response = query_engine.query("What did the author do growing up?")
print(len(response.source_nodes))
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
2