Skip to content

txtai Vector Store

If you’re opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.

%pip install llama-index-vector-stores-txtai
!pip install llama-index
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import txtai
# Create txtai ann index
txtai_index = txtai.ann.ANNFactory.create({"backend": "numpy"})

Load documents, build the VectorStoreIndex

Section titled “Load documents, build the VectorStoreIndex”
from llama_index.core import (
SimpleDirectoryReader,
load_index_from_storage,
VectorStoreIndex,
StorageContext,
)
from llama_index.vector_stores.txtai import TxtaiVectorStore
from IPython.display import Markdown, display

Download Data

!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
# load documents
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
vector_store = TxtaiVectorStore(txtai_index=txtai_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
# save index to disk
index.storage_context.persist()
# load index from disk
vector_store = TxtaiVectorStore.from_persist_dir("./storage")
storage_context = StorageContext.from_defaults(
vector_store=vector_store, persist_dir="./storage"
)
index = load_index_from_storage(storage_context=storage_context)
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
display(Markdown(f"<b>{response}</b>"))
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine()
response = query_engine.query(
"What did the author do after his time at Y Combinator?"
)
display(Markdown(f"<b>{response}</b>"))