Weaviate Vector Store - Hybrid Search
If you’re opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.
%pip install llama-index-vector-stores-weaviate
!pip install llama-index
import loggingimport sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
Creating a Weaviate Client
Section titled “Creating a Weaviate Client”import osimport openai
os.environ["OPENAI_API_KEY"] = ""openai.api_key = os.environ["OPENAI_API_KEY"]
import weaviate
# Connect to cloud instancecluster_url = ""api_key = ""
client = weaviate.connect_to_wcs( cluster_url=cluster_url, auth_credentials=weaviate.auth.AuthApiKey(api_key),)
# Connect to local instance# client = weaviate.connect_to_local()
from llama_index.core import VectorStoreIndex, SimpleDirectoryReaderfrom llama_index.vector_stores.weaviate import WeaviateVectorStorefrom llama_index.core.response.notebook_utils import display_response
Download Data
Section titled “Download Data”!mkdir -p 'data/paul_graham/'!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
Load documents
Section titled “Load documents”# load documentsdocuments = SimpleDirectoryReader("./data/paul_graham/").load_data()
Build the VectorStoreIndex with WeaviateVectorStore
Section titled “Build the VectorStoreIndex with WeaviateVectorStore”from llama_index.core import StorageContext
vector_store = WeaviateVectorStore(weaviate_client=client)storage_context = StorageContext.from_defaults(vector_store=vector_store)index = VectorStoreIndex.from_documents( documents, storage_context=storage_context)
# NOTE: you may also choose to define a index_name manually.# index_name = "test_prefix"# vector_store = WeaviateVectorStore(weaviate_client=client, index_name=index_name)
Query Index with Default Vector Search
Section titled “Query Index with Default Vector Search”# set Logging to DEBUG for more detailed outputsquery_engine = index.as_query_engine(similarity_top_k=2)response = query_engine.query("What did the author do growing up?")
display_response(response)
Query Index with Hybrid Search
Section titled “Query Index with Hybrid Search”Use hybrid search with bm25 and vector.
alpha
parameter determines weighting (alpha = 0 -> bm25, alpha=1 -> vector search).
By default, alpha=0.75
is used (very similar to vector search)
Section titled “By default, alpha=0.75 is used (very similar to vector search)”# set Logging to DEBUG for more detailed outputsquery_engine = index.as_query_engine( vector_store_query_mode="hybrid", similarity_top_k=2)response = query_engine.query( "What did the author do growing up?",)
display_response(response)
Set alpha=0.
to favor bm25
Section titled “Set alpha=0. to favor bm25”# set Logging to DEBUG for more detailed outputsquery_engine = index.as_query_engine( vector_store_query_mode="hybrid", similarity_top_k=2, alpha=0.0)response = query_engine.query( "What did the author do growing up?",)
display_response(response)