Skip to content

Postgres

Configure your own Postgres instance as data sink.

postgres

To configure Postgres as a vector store for your LlamaCloud documents you will need the following:

ParameterDescriptionExample
DatabaseDatabase namellamaindex
HostConnection endpointmy-postgres-cluster.us-east-1.rds.amazonaws.com
UserDatabase usernamepostgres
PasswordPassword for database user*****
Table NameTable where embeddings will be storedllamaindex
Schema NameSchema in which the database table will existpublic
Embedding DimensionDimension size of embeddings1536
PortPort where Postgres listens5432
from llama_cloud.types import CloudPostgresVectorStore
ds = {
'name': '<your-data-sink-name>',
'sink_type': 'POSTGRES',
'component': CloudPostgresVectorStore(
database='<database-name>',
host='<database-host>',
user='<user>',
password='<password>',
port=5432,
embed_dim=1536,
schema_name='<schema>',
table_name='<table>'
)
}
data_sink = client.data_sinks.create_data_sink(request=ds)