DashVector Reader
If you’re opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.
%pip install llama-index-readers-dashvector
!pip install llama-index
import loggingimport sysimport os
logging.basicConfig(stream=sys.stdout, level=logging.INFO)logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
api_key = os.environ["DASHVECTOR_API_KEY"]
from llama_index.readers.dashvector import DashVectorReader
reader = DashVectorReader(api_key=api_key)
import numpy as np
# the query_vector is an embedding representation of your query_vectorquery_vector = [n1, n2, n3, ...]
# NOTE: Required args are index_name, id_to_text_map, vector.# In addition, we can pass through the metadata filter that meet the SQL syntax.# See the Python client: https://pypi.org/project/dashvector/ for more details.documents = reader.load_data( collection_name="quickstart", topk=3, vector=query_vector, filter="key = 'value'", output_fields=["key1", "key2"],)
Create index
Section titled “Create index”from llama_index.core import ListIndexfrom IPython.display import Markdown, display
index = ListIndex.from_documents(documents)
# set Logging to DEBUG for more detailed outputsquery_engine = index.as_query_engine()response = query_engine.query("<query_text>")
display(Markdown(f"<b>{response}</b>"))