Bedrock Embeddings
If you’re opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.
%pip install llama-index-embeddings-bedrock
import os
from llama_index.embeddings.bedrock import BedrockEmbedding
embed_model = BedrockEmbedding( aws_access_key_id=os.getenv("AWS_ACCESS_KEY_ID"), aws_secret_access_key=os.getenv("AWS_SECRET_ACCESS_KEY"), aws_session_token=os.getenv("AWS_SESSION_TOKEN"), region_name="<aws-region>", profile_name="<aws-profile>",)
embedding = embed_model.get_text_embedding("hello world")
List supported models
Section titled “List supported models”To check list of supported models of Amazon Bedrock on LlamaIndex, call BedrockEmbedding.list_supported_models()
as follows.
from llama_index.embeddings.bedrock import BedrockEmbeddingimport json
supported_models = BedrockEmbedding.list_supported_models()print(json.dumps(supported_models, indent=2))
Provider: Amazon
Section titled “Provider: Amazon”Amazon Bedrock Titan embeddings.
from llama_index.embeddings.bedrock import BedrockEmbedding
model = BedrockEmbedding(model_name="amazon.titan-embed-g1-text-02")embeddings = model.get_text_embedding("hello world")print(embeddings)
Provider: Cohere
Section titled “Provider: Cohere”cohere.embed-english-v3
Section titled “cohere.embed-english-v3”model = BedrockEmbedding(model_name="cohere.embed-english-v3")coherePayload = ["This is a test document", "This is another test document"]
embed1 = model.get_text_embedding("This is a test document")print(embed1)
embeddings = model.get_text_embedding_batch(coherePayload)print(embeddings)
MultiLingual Embeddings from Cohere
Section titled “MultiLingual Embeddings from Cohere”model = BedrockEmbedding(model_name="cohere.embed-multilingual-v3")coherePayload = [ "This is a test document", "తెలుగు అనేది ద్రావిడ భాషల కుటుంబానికి చెందిన భాష.", "Esto es una prueba de documento multilingüe.", "攻殻機動隊", "Combien de temps ça va prendre ?", "Документ проверен",]embeddings = model.get_text_embedding_batch(coherePayload)print(embeddings)