Skip to content

IBM watsonx.ai

WatsonxEmbeddings is a wrapper for IBM watsonx.ai embedding models.

This example shows how to communicate with watsonx.ai embedding models using the LlamaIndex Embeddings API.

Install the llama-index-embeddings-ibm package:

!pip install -qU llama-index-embeddings-ibm

The cell below defines the credentials required to work with watsonx Embeddings.

Action: Provide the IBM Cloud user API key. For details, see Managing user API keys.

import os
from getpass import getpass
watsonx_api_key = getpass()
os.environ["WATSONX_APIKEY"] = watsonx_api_key

Additionally, you can pass additional secrets as an environment variable:

import os
os.environ["WATSONX_URL"] = "your service instance url"
os.environ["WATSONX_TOKEN"] = "your token for accessing the CPD cluster"
os.environ["WATSONX_PASSWORD"] = "your password for accessing the CPD cluster"
os.environ["WATSONX_USERNAME"] = "your username for accessing the CPD cluster"
os.environ[
"WATSONX_INSTANCE_ID"
] = "your instance_id for accessing the CPD cluster"

You might need to adjust embedding parameters for different tasks:

truncate_input_tokens = 3

Initialize the WatsonxEmbeddings class with the previously set parameter.

Note:

In this example, we’ll use the project_id and Dallas URL.

You need to specify the model_id that will be used for inferencing. You can find the list of all the available models in Supported foundation models.

from llama_index.embeddings.ibm import WatsonxEmbeddings
watsonx_embedding = WatsonxEmbeddings(
model_id="ibm/slate-125m-english-rtrvr",
url="https://us-south.ml.cloud.ibm.com",
project_id="PASTE YOUR PROJECT_ID HERE",
truncate_input_tokens=truncate_input_tokens,
)

Alternatively, you can use Cloud Pak for Data credentials. For details, see watsonx.ai software setup.

watsonx_embedding = WatsonxEmbeddings(
model_id="ibm/slate-125m-english-rtrvr",
url="PASTE YOUR URL HERE",
username="PASTE YOUR USERNAME HERE",
password="PASTE YOUR PASSWORD HERE",
instance_id="openshift",
version="4.8",
project_id="PASTE YOUR PROJECT_ID HERE",
truncate_input_tokens=truncate_input_tokens,
)
query = "Example query."
query_result = watsonx_embedding.get_query_embedding(query)
print(query_result[:5])
[-0.05538924, 0.05161056, 0.01207759, 0.0017501727, -0.017691258]
texts = ["This is a content of one document", "This is another document"]
doc_result = watsonx_embedding.get_text_embedding_batch(texts)
print(doc_result[0][:5])
[0.009447167, -0.024981938, -0.02601326, -0.04048393, -0.05780444]