Skip to content

LangChain Embeddings

This guide shows you how to use embedding models from LangChain.

Open In Colab

If you’re opening this Notebook on colab, you will probably need to install LlamaIndex πŸ¦™.

%pip install llama-index-embeddings-langchain
!pip install llama-index
from langchain.embeddings import HuggingFaceEmbeddings
from llama_index.embeddings.langchain import LangchainEmbedding
lc_embed_model = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2"
)
embed_model = LangchainEmbedding(lc_embed_model)
# Basic embedding example
embeddings = embed_model.get_text_embedding(
"It is raining cats and dogs here!"
)
print(len(embeddings), embeddings[:10])
768 [-0.005906202830374241, 0.04911914840340614, -0.04757878929376602, -0.04320324584841728, 0.02837090566754341, -0.017371710389852524, -0.04422023147344589, -0.019035547971725464, 0.04941621795296669, -0.03839121758937836]