DeepEval: Evaluation and Observability for LlamaIndex
DeepEval (by Confident AI) now integrates with LlamaIndex, giving you end-to-end visibility and evaluation tools for your LlamaIndex agents.
Quickstart
Section titled “Quickstart”Install the following packages:
!pip install -U deepeval llama-index
Login with your Confident API key and configure DeepEval as instrument LlamaIndex:
import llama_index.core.instrumentation as instrument
import deepevalfrom deepeval.integrations.llama_index import instrument_llama_index
deepeval.login("<your-confident-api-key>")
instrument_llama_index(instrument.get_dispatcher())
Example Agent
Section titled “Example Agent”⚠️ Note: DeepEval may not work reliably in Jupyter notebooks due to event loop conflicts. It is recommended to run examples in a standalone Python script instead.
import osimport timeimport asyncio
from llama_index.llms.openai import OpenAIimport llama_index.core.instrumentation as instrumentfrom llama_index.core.agent.workflow import FunctionAgent
import deepevalfrom deepeval.integrations.llama_index import instrument_llama_index
# Don't forget to setup tracingdeepeval.login("<your-confident-api-key>")
# Instrument LlamaIndexinstrument_llama_index(instrument.get_dispatcher())
os.environ["OPENAI_API_KEY"] = "<your-openai-api-key>"
def multiply(a: float, b: float) -> float: """Useful for multiplying two numbers.""" return a * b
agent = FunctionAgent( tools=[multiply], llm=OpenAI(model="gpt-4o-mini"), system_prompt="You are a helpful assistant that can perform calculations.",)
async def main(): response = await agent.run("What's 7 * 8?") print(response)
if __name__ == "__main__": asyncio.run(main())
You can directly view the traces in the Observatory by clicking on the link in the output printed in the console.
Online Evaluations
Section titled “Online Evaluations”You can use DeepEval to evaluate your LlamaIndex agents on Confident AI.
- Create a metric collection on Confident AI.
- Pass the metric collection name on DeepEval’s LlamaIndex agent wrapper.
import osimport timeimport asyncio
from llama_index.llms.openai import OpenAIimport llama_index.core.instrumentation as instrument
import deepevalfrom deepeval.integrations.llama_index import FunctionAgentfrom deepeval.integrations.llama_index import instrument_llama_index
deepeval.login("<your-confident-api-key>")
instrument_llama_index(instrument.get_dispatcher())
os.environ["OPENAI_API_KEY"] = ""
def multiply(a: float, b: float) -> float: """Useful for multiplying two numbers.""" return a * b
agent = FunctionAgent( tools=[multiply], llm=OpenAI(model="gpt-4o-mini"), system_prompt="You are a helpful assistant that can perform calculations.", metric_collection="test_collection_1",)
async def main(): response = await agent.run("What's 7 * 8?") print(response)
if __name__ == "__main__": asyncio.run(main())