Observability with OpenLLMetry
OpenLLMetry is an open-source project based on OpenTelemetry for tracing and monitoring LLM applications. It connects to all major observability platforms (like Datadog, Dynatrace, Honeycomb, New Relic and others) and installs in minutes.
If you’re opening this Notebook on colab, you will probably need to install LlamaIndex 🦙 and OpenLLMetry.
!pip install llama-index!pip install traceloop-sdk
Configure API keys
Section titled “Configure API keys”Sign-up to Traceloop at app.traceloop.com. Then, go to the API keys page and create a new API key. Copy the key and paste it in the cell below.
If you prefer to use a different observability platform like Datadog, Dynatrace, Honeycomb or others, you can find instructions on how to configure it here.
import os
os.environ["OPENAI_API_KEY"] = "sk-..."os.environ["TRACELOOP_API_KEY"] = "..."
Initialize OpenLLMetry
Section titled “Initialize OpenLLMetry”from traceloop.sdk import Traceloop
Traceloop.init()
[32mTraceloop syncing configuration and prompts[39m[32mTraceloop exporting traces to https://api.traceloop.com authenticating with bearer token[39m
Download Data
Section titled “Download Data”!mkdir -p 'data/paul_graham/'!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
--2024-01-12 12:43:16-- https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txtResolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.108.133, 185.199.111.133, ...Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.HTTP request sent, awaiting response... 200 OKLength: 75042 (73K) [text/plain]Saving to: ‘data/paul_graham/paul_graham_essay.txt’
data/paul_graham/pa 100%[===================>] 73.28K --.-KB/s in 0.02s
2024-01-12 12:43:17 (3.68 MB/s) - ‘data/paul_graham/paul_graham_essay.txt’ saved [75042/75042]
from llama_index.core import SimpleDirectoryReader
docs = SimpleDirectoryReader("./data/paul_graham/").load_data()
Run a query
Section titled “Run a query”from llama_index.core import VectorStoreIndex
index = VectorStoreIndex.from_documents(docs)query_engine = index.as_query_engine()response = query_engine.query("What did the author do growing up?")print(response)
The author wrote short stories and also worked on programming, specifically on an IBM 1401 computer in 9th grade. They used an early version of Fortran and typed programs on punch cards. They also mentioned getting a microcomputer, a TRS-80, in about 1980 and started programming on it.