Vertex AI Search Retriever
This notebook walks you through how to setup a Retriever that can fetch from Vertex AI search datastore
Pre-requirements
Section titled “Pre-requirements”- Set up a Google Cloud project
- Set up a Vertex AI Search datastore
- Enable Vertex AI API
Install library
Section titled “Install library”%pip install llama-index-retrievers-vertexai-search
Restart current runtime
Section titled “Restart current runtime”To use the newly installed packages in this Jupyter runtime, you must restart the runtime. You can do this by running the cell below, which will restart the current kernel.
# Colab only# Automatically restart kernel after installs so that your environment can access the new packagesimport IPython
app = IPython.Application.instance()app.kernel.do_shutdown(True)
Authenticate your notebook environment (Colab only)
Section titled “Authenticate your notebook environment (Colab only)”If you are running this notebook on Google Colab, you will need to authenticate your environment. To do this, run the new cell below. This step is not required if you are using Vertex AI Workbench.
# Colab onlyimport sys
if "google.colab" in sys.modules: from google.colab import auth
auth.authenticate_user()
# If you're using JupyterLab instance, uncomment and run the below code.#!gcloud auth login
from llama_index.retrievers.vertexai_search import VertexAISearchRetriever
# Please note it's underscore '_' in vertexai_search
Set Google Cloud project information and initialize Vertex AI SDK
Section titled “Set Google Cloud project information and initialize Vertex AI SDK”To get started using Vertex AI, you must have an existing Google Cloud project and enable the Vertex AI API.
Learn more about setting up a project and a development environment.
PROJECT_ID = "{your project id}" # @param {type:"string"}LOCATION = "us-central1" # @param {type:"string"}import vertexai
vertexai.init(project=PROJECT_ID, location=LOCATION)
Test Structured datastore
Section titled “Test Structured datastore”DATA_STORE_ID = "{your id}" # @param {type:"string"}LOCATION_ID = "global"
struct_retriever = VertexAISearchRetriever( project_id=PROJECT_ID, data_store_id=DATA_STORE_ID, location_id=LOCATION_ID, engine_data_type=1,)
query = "harry potter"retrieved_results = struct_retriever.retrieve(query)
print(retrieved_results[0])
Test Unstructured datastore
Section titled “Test Unstructured datastore”DATA_STORE_ID = "{your id}"LOCATION_ID = "global"
unstruct_retriever = VertexAISearchRetriever( project_id=PROJECT_ID, data_store_id=DATA_STORE_ID, location_id=LOCATION_ID, engine_data_type=0,)
query = "alphabet 2018 earning"retrieved_results2 = unstruct_retriever.retrieve(query)
print(retrieved_results2[0])
Test Website datastore
Section titled “Test Website datastore”DATA_STORE_ID = "{your id}"LOCATION_ID = "global"website_retriever = VertexAISearchRetriever( project_id=PROJECT_ID, data_store_id=DATA_STORE_ID, location_id=LOCATION_ID, engine_data_type=2,)
query = "what's diamaxol"retrieved_results3 = website_retriever.retrieve(query)
print(retrieved_results3[0])
Use in Query Engine
Section titled “Use in Query Engine”# import modules neededfrom llama_index.core import Settingsfrom llama_index.llms.vertex import Vertexfrom llama_index.embeddings.vertex import VertexTextEmbedding
vertex_gemini = Vertex( model="gemini-1.5-pro", temperature=0, context_window=100000, additional_kwargs={},)# setup the index/query llmSettings.llm = vertex_gemini
from llama_index.core.query_engine import RetrieverQueryEngine
query_engine = RetrieverQueryEngine.from_args(struct_retriever)
response = query_engine.query("Tell me about harry potter")print(str(response))