Azure CosmosDB MongoDB Vector Store
In this notebook we are going to show how to use Azure Cosmosdb Mongodb vCore to perform vector searches in LlamaIndex. We will create the embedding using Azure Open AI.
If you’re opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.
%pip install llama-index-embeddings-openai%pip install llama-index-vector-stores-azurecosmosmongo%pip install llama-index-llms-azure-openai
!pip install llama-index
import osimport jsonimport openaifrom llama_index.llms.azure_openai import AzureOpenAIfrom llama_index.embeddings.openai import OpenAIEmbeddingfrom llama_index.core import VectorStoreIndex, SimpleDirectoryReader
Setup Azure OpenAI
Section titled “Setup Azure OpenAI”The first step is to configure the models. They will be used to create embeddings for the documents loaded into the db and for llm completions.
import os
# Set up the AzureOpenAI instancellm = AzureOpenAI( model_name=os.getenv("OPENAI_MODEL_COMPLETION"), deployment_name=os.getenv("OPENAI_MODEL_COMPLETION"), api_base=os.getenv("OPENAI_API_BASE"), api_key=os.getenv("OPENAI_API_KEY"), api_type=os.getenv("OPENAI_API_TYPE"), api_version=os.getenv("OPENAI_API_VERSION"), temperature=0,)
# Set up the OpenAIEmbedding instanceembed_model = OpenAIEmbedding( model=os.getenv("OPENAI_MODEL_EMBEDDING"), deployment_name=os.getenv("OPENAI_DEPLOYMENT_EMBEDDING"), api_base=os.getenv("OPENAI_API_BASE"), api_key=os.getenv("OPENAI_API_KEY"), api_type=os.getenv("OPENAI_API_TYPE"), api_version=os.getenv("OPENAI_API_VERSION"),)
from llama_index.core import Settings
Settings.llm = llmSettings.embed_model = embed_model
Download Data
!mkdir -p 'data/paul_graham/'!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
Loading documents
Section titled “Loading documents”Load the documents stored in the data/paul_graham/
using the SimpleDirectoryReader
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
print("Document ID:", documents[0].doc_id)
Document ID: c432ff1c-61ea-4c91-bd89-62be29078e79
Create the index
Section titled “Create the index”Here we establish the connection to an Azure Cosmosdb mongodb vCore cluster and create an vector search index.
import pymongofrom llama_index.vector_stores.azurecosmosmongo import ( AzureCosmosDBMongoDBVectorSearch,)from llama_index.core import VectorStoreIndexfrom llama_index.core import StorageContextfrom llama_index.core import SimpleDirectoryReader
connection_string = os.environ.get("AZURE_COSMOSDB_MONGODB_URI")mongodb_client = pymongo.MongoClient(connection_string)store = AzureCosmosDBMongoDBVectorSearch( mongodb_client=mongodb_client, db_name="demo_vectordb", collection_name="paul_graham_essay",)storage_context = StorageContext.from_defaults(vector_store=store)index = VectorStoreIndex.from_documents( documents, storage_context=storage_context)
Query the index
Section titled “Query the index”We can now ask questions using our index.
query_engine = index.as_query_engine()response = query_engine.query("What did the author love working on?")
import textwrap
print(textwrap.fill(str(response), 100))
The author loved working on multiple projects that were not their thesis while in grad school,including Lisp hacking and writing On Lisp. They eventually wrote a dissertation on applications ofcontinuations in just 5 weeks to graduate. Afterward, they applied to art schools and were acceptedinto the BFA program at RISD.
response = query_engine.query("What did he/she do in summer of 2016?")
print(textwrap.fill(str(response), 100))
The person moved to England with their family in the summer of 2016.